mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-17 01:56:46 +00:00
refactor: Update Langchain to 0.1.41 & add support for Claude 3 (#8825)
Signed-off-by: Oleg Ivaniv <me@olegivaniv.com> Co-authored-by: Michael Kret <michael.k@radency.com>
This commit is contained in:
@@ -8,19 +8,19 @@ import type {
|
||||
INodeTypeDescription,
|
||||
} from 'n8n-workflow';
|
||||
|
||||
import type { BaseLanguageModel } from 'langchain/base_language';
|
||||
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
||||
import {
|
||||
AIMessagePromptTemplate,
|
||||
PromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
ChatPromptTemplate,
|
||||
} from 'langchain/prompts';
|
||||
import type { BaseOutputParser } from 'langchain/schema/output_parser';
|
||||
} from '@langchain/core/prompts';
|
||||
import type { BaseOutputParser } from '@langchain/core/output_parsers';
|
||||
import { CombiningOutputParser } from 'langchain/output_parsers';
|
||||
import { LLMChain } from 'langchain/chains';
|
||||
import type { BaseChatModel } from 'langchain/chat_models/base';
|
||||
import { HumanMessage } from 'langchain/schema';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { HumanMessage } from '@langchain/core/messages';
|
||||
import { getTemplateNoticeField } from '../../../utils/sharedFields';
|
||||
import {
|
||||
getOptionalOutputParsers,
|
||||
@@ -92,6 +92,7 @@ async function getChainPromptTemplate(
|
||||
llm: BaseLanguageModel | BaseChatModel,
|
||||
messages?: MessagesTemplate[],
|
||||
formatInstructions?: string,
|
||||
query?: string,
|
||||
) {
|
||||
const queryTemplate = new PromptTemplate({
|
||||
template: `{query}${formatInstructions ? '\n{formatInstructions}' : ''}`,
|
||||
@@ -129,7 +130,15 @@ async function getChainPromptTemplate(
|
||||
}),
|
||||
);
|
||||
|
||||
parsedMessages.push(new HumanMessagePromptTemplate(queryTemplate));
|
||||
const lastMessage = parsedMessages[parsedMessages.length - 1];
|
||||
// If the last message is a human message and it has an array of content, we need to add the query to the last message
|
||||
if (lastMessage instanceof HumanMessage && Array.isArray(lastMessage.content)) {
|
||||
const humanMessage = new HumanMessagePromptTemplate(queryTemplate);
|
||||
const test = await humanMessage.format({ query });
|
||||
lastMessage.content.push({ text: test.content.toString(), type: 'text' });
|
||||
} else {
|
||||
parsedMessages.push(new HumanMessagePromptTemplate(queryTemplate));
|
||||
}
|
||||
return ChatPromptTemplate.fromMessages(parsedMessages);
|
||||
}
|
||||
|
||||
@@ -146,6 +155,7 @@ async function createSimpleLLMChain(
|
||||
llm,
|
||||
prompt,
|
||||
});
|
||||
|
||||
const response = (await chain.call({
|
||||
query,
|
||||
signal: context.getExecutionCancelSignal(),
|
||||
@@ -167,6 +177,8 @@ async function getChain(
|
||||
itemIndex,
|
||||
llm,
|
||||
messages,
|
||||
undefined,
|
||||
query,
|
||||
);
|
||||
|
||||
// If there are no output parsers, create a simple LLM chain and execute the query
|
||||
@@ -187,6 +199,7 @@ async function getChain(
|
||||
llm,
|
||||
messages,
|
||||
formatInstructions,
|
||||
query,
|
||||
);
|
||||
|
||||
const chain = prompt.pipe(llm).pipe(combinedOutputParser);
|
||||
|
||||
Reference in New Issue
Block a user