mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-21 11:49:59 +00:00
refactor(Question and Answer Chain Node): Use new LangChain's syntax (#13868)
This commit is contained in:
@@ -0,0 +1,229 @@
|
||||
import { Document } from '@langchain/core/documents';
|
||||
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
||||
import type { BaseRetriever } from '@langchain/core/retrievers';
|
||||
import { FakeChatModel, FakeLLM, FakeRetriever } from '@langchain/core/utils/testing';
|
||||
import get from 'lodash/get';
|
||||
import type { IDataObject, IExecuteFunctions } from 'n8n-workflow';
|
||||
import { NodeConnectionType, NodeOperationError, UnexpectedError } from 'n8n-workflow';
|
||||
|
||||
import { ChainRetrievalQa } from '../ChainRetrievalQa.node';
|
||||
|
||||
const createExecuteFunctionsMock = (
|
||||
parameters: IDataObject,
|
||||
fakeLlm: BaseLanguageModel,
|
||||
fakeRetriever: BaseRetriever,
|
||||
version: number,
|
||||
) => {
|
||||
return {
|
||||
getExecutionCancelSignal() {
|
||||
return new AbortController().signal;
|
||||
},
|
||||
getNodeParameter(parameter: string) {
|
||||
return get(parameters, parameter);
|
||||
},
|
||||
getNode() {
|
||||
return {
|
||||
typeVersion: version,
|
||||
};
|
||||
},
|
||||
getInputConnectionData(type: NodeConnectionType) {
|
||||
if (type === NodeConnectionType.AiLanguageModel) {
|
||||
return fakeLlm;
|
||||
}
|
||||
if (type === NodeConnectionType.AiRetriever) {
|
||||
return fakeRetriever;
|
||||
}
|
||||
return null;
|
||||
},
|
||||
getInputData() {
|
||||
return [{ json: {} }];
|
||||
},
|
||||
getWorkflow() {
|
||||
return {
|
||||
name: 'Test Workflow',
|
||||
};
|
||||
},
|
||||
getExecutionId() {
|
||||
return 'test_execution_id';
|
||||
},
|
||||
continueOnFail() {
|
||||
return false;
|
||||
},
|
||||
logger: { debug: jest.fn() },
|
||||
} as unknown as IExecuteFunctions;
|
||||
};
|
||||
|
||||
describe('ChainRetrievalQa', () => {
|
||||
let node: ChainRetrievalQa;
|
||||
const testDocs = [
|
||||
new Document({
|
||||
pageContent: 'The capital of France is Paris. It is known for the Eiffel Tower.',
|
||||
}),
|
||||
new Document({
|
||||
pageContent:
|
||||
'Paris is the largest city in France with a population of over 2 million people.',
|
||||
}),
|
||||
];
|
||||
|
||||
const fakeRetriever = new FakeRetriever({ output: testDocs });
|
||||
|
||||
beforeEach(() => {
|
||||
node = new ChainRetrievalQa();
|
||||
});
|
||||
|
||||
it.each([1.3, 1.4, 1.5])(
|
||||
'should process a query using a chat model (version %s)',
|
||||
async (version) => {
|
||||
// Mock a chat model that returns a predefined answer
|
||||
const mockChatModel = new FakeChatModel({});
|
||||
|
||||
const params = {
|
||||
promptType: 'define',
|
||||
text: 'What is the capital of France?',
|
||||
options: {},
|
||||
};
|
||||
|
||||
const result = await node.execute.call(
|
||||
createExecuteFunctionsMock(params, mockChatModel, fakeRetriever, version),
|
||||
);
|
||||
|
||||
// Check that the result contains the expected response (FakeChatModel returns the query as response)
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0]).toHaveLength(1);
|
||||
expect(result[0][0].json.response).toBeDefined();
|
||||
|
||||
let responseText = result[0][0].json.response;
|
||||
if (version < 1.5 && typeof responseText === 'object') {
|
||||
responseText = (responseText as { text: string }).text;
|
||||
}
|
||||
|
||||
expect(responseText).toContain('You are an assistant for question-answering tasks'); // system prompt
|
||||
expect(responseText).toContain('The capital of France is Paris.'); // context
|
||||
expect(responseText).toContain('What is the capital of France?'); // query
|
||||
},
|
||||
);
|
||||
|
||||
it.each([1.3, 1.4, 1.5])(
|
||||
'should process a query using a text completion model (version %s)',
|
||||
async (version) => {
|
||||
// Mock a text completion model that returns a predefined answer
|
||||
const mockTextModel = new FakeLLM({ response: 'Paris is the capital of France.' });
|
||||
|
||||
const modelCallSpy = jest.spyOn(mockTextModel, '_call');
|
||||
|
||||
const params = {
|
||||
promptType: 'define',
|
||||
text: 'What is the capital of France?',
|
||||
options: {},
|
||||
};
|
||||
|
||||
const result = await node.execute.call(
|
||||
createExecuteFunctionsMock(params, mockTextModel, fakeRetriever, version),
|
||||
);
|
||||
|
||||
// Check model was called with the correct query
|
||||
expect(modelCallSpy).toHaveBeenCalled();
|
||||
expect(modelCallSpy.mock.calls[0][0]).toEqual(
|
||||
expect.stringContaining('Question: What is the capital of France?'),
|
||||
);
|
||||
|
||||
// Check that the result contains the expected response
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0]).toHaveLength(1);
|
||||
|
||||
if (version < 1.5) {
|
||||
expect((result[0][0].json.response as { text: string }).text).toContain(
|
||||
'Paris is the capital of France.',
|
||||
);
|
||||
} else {
|
||||
expect(result[0][0].json).toEqual({
|
||||
response: 'Paris is the capital of France.',
|
||||
});
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
it.each([1.3, 1.4, 1.5])(
|
||||
'should use a custom system prompt if provided (version %s)',
|
||||
async (version) => {
|
||||
const customSystemPrompt = `You are a geography expert. Use the following context to answer the question.
|
||||
----------------
|
||||
Context: {context}`;
|
||||
|
||||
// The chat model will return a response indicating it received the custom prompt
|
||||
const mockChatModel = new FakeChatModel({});
|
||||
|
||||
const params = {
|
||||
promptType: 'define',
|
||||
text: 'What is the capital of France?',
|
||||
options: {
|
||||
systemPromptTemplate: customSystemPrompt,
|
||||
},
|
||||
};
|
||||
|
||||
const result = await node.execute.call(
|
||||
createExecuteFunctionsMock(params, mockChatModel, fakeRetriever, version),
|
||||
);
|
||||
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0]).toHaveLength(1);
|
||||
if (version < 1.5) {
|
||||
expect((result[0][0].json.response as { text: string }).text).toContain(
|
||||
'You are a geography expert.',
|
||||
);
|
||||
} else {
|
||||
expect(result[0][0].json.response).toContain('You are a geography expert.');
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
it.each([1.3, 1.4, 1.5])(
|
||||
'should throw an error if the query is undefined (version %s)',
|
||||
async (version) => {
|
||||
const mockChatModel = new FakeChatModel({});
|
||||
|
||||
const params = {
|
||||
promptType: 'define',
|
||||
text: undefined, // undefined query
|
||||
options: {},
|
||||
};
|
||||
|
||||
await expect(
|
||||
node.execute.call(
|
||||
createExecuteFunctionsMock(params, mockChatModel, fakeRetriever, version),
|
||||
),
|
||||
).rejects.toThrow(NodeOperationError);
|
||||
},
|
||||
);
|
||||
|
||||
it.each([1.3, 1.4, 1.5])(
|
||||
'should add error to json if continueOnFail is true (version %s)',
|
||||
async (version) => {
|
||||
// Create a model that will throw an error
|
||||
class ErrorLLM extends FakeLLM {
|
||||
async _call(): Promise<string> {
|
||||
throw new UnexpectedError('Model error');
|
||||
}
|
||||
}
|
||||
|
||||
const errorModel = new ErrorLLM({});
|
||||
|
||||
const params = {
|
||||
promptType: 'define',
|
||||
text: 'What is the capital of France?',
|
||||
options: {},
|
||||
};
|
||||
|
||||
// Override continueOnFail to return true
|
||||
const execMock = createExecuteFunctionsMock(params, errorModel, fakeRetriever, version);
|
||||
execMock.continueOnFail = () => true;
|
||||
|
||||
const result = await node.execute.call(execMock);
|
||||
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0]).toHaveLength(1);
|
||||
expect(result[0][0].json).toHaveProperty('error');
|
||||
expect(result[0][0].json.error).toContain('Model error');
|
||||
},
|
||||
);
|
||||
});
|
||||
Reference in New Issue
Block a user