mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
feat: Add AI tool building capabilities (#7336)
Github issue / Community forum post (link here to close automatically): https://community.n8n.io/t/langchain-memory-chat/23733 --------- Signed-off-by: Oleg Ivaniv <me@olegivaniv.com> Co-authored-by: Oleg Ivaniv <me@olegivaniv.com> Co-authored-by: Val <68596159+valya@users.noreply.github.com> Co-authored-by: Alex Grozav <alex@grozav.com> Co-authored-by: कारतोफ्फेलस्क्रिप्ट™ <aditya@netroy.in> Co-authored-by: Deborah <deborah@starfallprojects.co.uk> Co-authored-by: Jesper Bylund <mail@jesperbylund.com> Co-authored-by: Jon <jonathan.bennetts@gmail.com> Co-authored-by: Michael Kret <88898367+michael-radency@users.noreply.github.com> Co-authored-by: Giulio Andreini <andreini@netseven.it> Co-authored-by: Mason Geloso <Mason.geloso@gmail.com> Co-authored-by: Mason Geloso <hone@Masons-Mac-mini.local> Co-authored-by: Mutasem Aldmour <mutasem@n8n.io>
This commit is contained in:
82
packages/@n8n/nodes-langchain/utils/EpubLoader.ts
Normal file
82
packages/@n8n/nodes-langchain/utils/EpubLoader.ts
Normal file
@@ -0,0 +1,82 @@
|
||||
// Modified version of https://github.com/hwchase17/langchainjs/blob/main/langchain/src/document_loaders/fs/epub.ts
|
||||
// to support loading of EPUB files from a Buffer
|
||||
import { parseEpub } from '@gxl/epub-parser';
|
||||
import { BaseDocumentLoader } from 'langchain/document_loaders/base';
|
||||
import { Document } from 'langchain/document';
|
||||
import { htmlToText } from 'html-to-text';
|
||||
/**
|
||||
* A class that extends the `BaseDocumentLoader` class. It represents a
|
||||
* document loader that loads documents from EPUB files.
|
||||
*/
|
||||
export class N8nEPubLoader extends BaseDocumentLoader {
|
||||
private splitChapters: boolean;
|
||||
|
||||
constructor(
|
||||
public file: Buffer,
|
||||
{ splitChapters = true } = {},
|
||||
) {
|
||||
super();
|
||||
this.splitChapters = splitChapters;
|
||||
}
|
||||
|
||||
/**
|
||||
* A protected method that takes an EPUB object as a parameter and returns
|
||||
* a promise that resolves to an array of objects representing the content
|
||||
* and metadata of each chapter.
|
||||
* @param epub The EPUB object to parse.
|
||||
* @returns A promise that resolves to an array of objects representing the content and metadata of each chapter.
|
||||
*/
|
||||
protected async parse(
|
||||
epub: ReturnType<typeof parseEpub>,
|
||||
): Promise<Array<{ pageContent: string; metadata?: object }>> {
|
||||
// We await it here because epub-parsers doesn't export a type for the
|
||||
// return value of parseEpub.
|
||||
const parsed = await epub;
|
||||
|
||||
const chapters = await Promise.all(
|
||||
(parsed.sections ?? []).map(async (chapter) => {
|
||||
if (!chapter.id) return null as never;
|
||||
|
||||
const html = chapter.htmlString;
|
||||
if (!html) return null as never;
|
||||
|
||||
return {
|
||||
html,
|
||||
title: chapter.id,
|
||||
};
|
||||
}),
|
||||
);
|
||||
return chapters.filter(Boolean).map((chapter) => ({
|
||||
pageContent: htmlToText(chapter.html),
|
||||
metadata: {
|
||||
...(chapter.title && { chapter: chapter.title }),
|
||||
},
|
||||
}));
|
||||
}
|
||||
|
||||
/**
|
||||
* A method that loads the EPUB file and returns a promise that resolves
|
||||
* to an array of `Document` instances.
|
||||
* @returns A promise that resolves to an array of `Document` instances.
|
||||
*/
|
||||
public async load(): Promise<Document[]> {
|
||||
const epub = parseEpub(this.file, { type: 'buffer' });
|
||||
const parsed = await this.parse(epub);
|
||||
|
||||
return this.splitChapters
|
||||
? parsed.map(
|
||||
(chapter) =>
|
||||
new Document({
|
||||
pageContent: chapter.pageContent,
|
||||
metadata: {
|
||||
...chapter.metadata,
|
||||
},
|
||||
}),
|
||||
)
|
||||
: [
|
||||
new Document({
|
||||
pageContent: parsed.map((chapter) => chapter.pageContent).join('\n\n'),
|
||||
}),
|
||||
];
|
||||
}
|
||||
}
|
||||
168
packages/@n8n/nodes-langchain/utils/N8nBinaryLoader.ts
Normal file
168
packages/@n8n/nodes-langchain/utils/N8nBinaryLoader.ts
Normal file
@@ -0,0 +1,168 @@
|
||||
import type { IExecuteFunctions, INodeExecutionData, IBinaryData } from 'n8n-workflow';
|
||||
import { NodeOperationError, NodeConnectionType } from 'n8n-workflow';
|
||||
|
||||
import type { TextSplitter } from 'langchain/text_splitter';
|
||||
import type { Document } from 'langchain/document';
|
||||
import { CSVLoader } from 'langchain/document_loaders/fs/csv';
|
||||
import { DocxLoader } from 'langchain/document_loaders/fs/docx';
|
||||
import { JSONLoader } from 'langchain/document_loaders/fs/json';
|
||||
import { PDFLoader } from 'langchain/document_loaders/fs/pdf';
|
||||
import { TextLoader } from 'langchain/document_loaders/fs/text';
|
||||
import { N8nEPubLoader } from './EpubLoader';
|
||||
import { getMetadataFiltersValues } from './helpers';
|
||||
|
||||
const SUPPORTED_MIME_TYPES = {
|
||||
auto: ['*/*'],
|
||||
pdfLoader: ['application/pdf'],
|
||||
csvLoader: ['text/csv'],
|
||||
epubLoader: ['application/epub+zip'],
|
||||
docxLoader: ['application/vnd.openxmlformats-officedocument.wordprocessingml.document'],
|
||||
textLoader: ['text/plain', 'text/mdx', 'text/md'],
|
||||
jsonLoader: ['application/json'],
|
||||
};
|
||||
|
||||
export class N8nBinaryLoader {
|
||||
private context: IExecuteFunctions;
|
||||
|
||||
private optionsPrefix: string;
|
||||
|
||||
constructor(context: IExecuteFunctions, optionsPrefix = '') {
|
||||
this.context = context;
|
||||
this.optionsPrefix = optionsPrefix;
|
||||
}
|
||||
|
||||
async processAll(items?: INodeExecutionData[]): Promise<Document[]> {
|
||||
const docs: Document[] = [];
|
||||
|
||||
if (!items) return [];
|
||||
|
||||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||||
const processedDocuments = await this.processItem(items[itemIndex], itemIndex);
|
||||
|
||||
docs.push(...processedDocuments);
|
||||
}
|
||||
|
||||
return docs;
|
||||
}
|
||||
|
||||
async processItem(item: INodeExecutionData, itemIndex: number): Promise<Document[]> {
|
||||
const selectedLoader: keyof typeof SUPPORTED_MIME_TYPES = this.context.getNodeParameter(
|
||||
'loader',
|
||||
itemIndex,
|
||||
) as keyof typeof SUPPORTED_MIME_TYPES;
|
||||
|
||||
const binaryDataKey = this.context.getNodeParameter('binaryDataKey', itemIndex) as string;
|
||||
const docs: Document[] = [];
|
||||
const metadata = getMetadataFiltersValues(this.context, itemIndex);
|
||||
|
||||
if (!item) return [];
|
||||
|
||||
// TODO: Should we support traversing the object to find the binary data?
|
||||
const binaryData = item.binary?.[binaryDataKey] as IBinaryData;
|
||||
|
||||
if (!binaryData) {
|
||||
throw new NodeOperationError(this.context.getNode(), 'No binary data set.');
|
||||
}
|
||||
|
||||
const { mimeType } = binaryData;
|
||||
|
||||
// Check if loader matches the mime-type of the data
|
||||
if (selectedLoader !== 'auto' && !SUPPORTED_MIME_TYPES[selectedLoader].includes(mimeType)) {
|
||||
const neededLoader = Object.keys(SUPPORTED_MIME_TYPES).find((loader) =>
|
||||
SUPPORTED_MIME_TYPES[loader as keyof typeof SUPPORTED_MIME_TYPES].includes(mimeType),
|
||||
);
|
||||
|
||||
throw new NodeOperationError(
|
||||
this.context.getNode(),
|
||||
`Mime type doesn't match selected loader. Please select under "Loader Type": ${neededLoader}`,
|
||||
);
|
||||
}
|
||||
|
||||
if (!Object.values(SUPPORTED_MIME_TYPES).flat().includes(mimeType)) {
|
||||
throw new NodeOperationError(this.context.getNode(), `Unsupported mime type: ${mimeType}`);
|
||||
}
|
||||
if (
|
||||
!SUPPORTED_MIME_TYPES[selectedLoader].includes(mimeType) &&
|
||||
selectedLoader !== 'textLoader' &&
|
||||
selectedLoader !== 'auto'
|
||||
) {
|
||||
throw new NodeOperationError(
|
||||
this.context.getNode(),
|
||||
`Unsupported mime type: ${mimeType} for selected loader: ${selectedLoader}`,
|
||||
);
|
||||
}
|
||||
|
||||
const bufferData = await this.context.helpers.getBinaryDataBuffer(itemIndex, binaryDataKey);
|
||||
const itemBlob = new Blob([new Uint8Array(bufferData)], { type: mimeType });
|
||||
|
||||
let loader: PDFLoader | CSVLoader | N8nEPubLoader | DocxLoader | TextLoader | JSONLoader;
|
||||
switch (mimeType) {
|
||||
case 'application/pdf':
|
||||
const splitPages = this.context.getNodeParameter(
|
||||
`${this.optionsPrefix}splitPages`,
|
||||
itemIndex,
|
||||
false,
|
||||
) as boolean;
|
||||
loader = new PDFLoader(itemBlob, {
|
||||
splitPages,
|
||||
});
|
||||
break;
|
||||
case 'text/csv':
|
||||
const column = this.context.getNodeParameter(
|
||||
`${this.optionsPrefix}column`,
|
||||
itemIndex,
|
||||
null,
|
||||
) as string;
|
||||
const separator = this.context.getNodeParameter(
|
||||
`${this.optionsPrefix}separator`,
|
||||
itemIndex,
|
||||
',',
|
||||
) as string;
|
||||
|
||||
loader = new CSVLoader(itemBlob, {
|
||||
column: column ?? undefined,
|
||||
separator,
|
||||
});
|
||||
break;
|
||||
case 'application/epub+zip':
|
||||
loader = new N8nEPubLoader(Buffer.from(bufferData));
|
||||
break;
|
||||
case 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
|
||||
loader = new DocxLoader(itemBlob);
|
||||
break;
|
||||
case 'text/plain':
|
||||
loader = new TextLoader(itemBlob);
|
||||
break;
|
||||
case 'application/json':
|
||||
const pointers = this.context.getNodeParameter(
|
||||
`${this.optionsPrefix}pointers`,
|
||||
itemIndex,
|
||||
'',
|
||||
) as string;
|
||||
const pointersArray = pointers.split(',').map((pointer) => pointer.trim());
|
||||
loader = new JSONLoader(itemBlob, pointersArray);
|
||||
break;
|
||||
default:
|
||||
loader = new TextLoader(itemBlob);
|
||||
}
|
||||
|
||||
const textSplitter = (await this.context.getInputConnectionData(
|
||||
NodeConnectionType.AiTextSplitter,
|
||||
0,
|
||||
)) as TextSplitter | undefined;
|
||||
|
||||
const loadedDoc = textSplitter ? await loader.loadAndSplit(textSplitter) : await loader.load();
|
||||
|
||||
docs.push(...loadedDoc);
|
||||
|
||||
if (metadata) {
|
||||
docs.forEach((document) => {
|
||||
document.metadata = {
|
||||
...document.metadata,
|
||||
...metadata,
|
||||
};
|
||||
});
|
||||
}
|
||||
return docs;
|
||||
}
|
||||
}
|
||||
98
packages/@n8n/nodes-langchain/utils/N8nJsonLoader.ts
Normal file
98
packages/@n8n/nodes-langchain/utils/N8nJsonLoader.ts
Normal file
@@ -0,0 +1,98 @@
|
||||
import {
|
||||
type IExecuteFunctions,
|
||||
type INodeExecutionData,
|
||||
NodeConnectionType,
|
||||
NodeOperationError,
|
||||
} from 'n8n-workflow';
|
||||
|
||||
import type { CharacterTextSplitter } from 'langchain/text_splitter';
|
||||
import type { Document } from 'langchain/document';
|
||||
import { JSONLoader } from 'langchain/document_loaders/fs/json';
|
||||
import { TextLoader } from 'langchain/document_loaders/fs/text';
|
||||
import { getMetadataFiltersValues } from './helpers';
|
||||
|
||||
export class N8nJsonLoader {
|
||||
private context: IExecuteFunctions;
|
||||
|
||||
private optionsPrefix: string;
|
||||
|
||||
constructor(context: IExecuteFunctions, optionsPrefix = '') {
|
||||
this.context = context;
|
||||
this.optionsPrefix = optionsPrefix;
|
||||
}
|
||||
|
||||
async processAll(items?: INodeExecutionData[]): Promise<Document[]> {
|
||||
const docs: Document[] = [];
|
||||
|
||||
if (!items) return [];
|
||||
|
||||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||||
const processedDocuments = await this.processItem(items[itemIndex], itemIndex);
|
||||
|
||||
docs.push(...processedDocuments);
|
||||
}
|
||||
|
||||
return docs;
|
||||
}
|
||||
|
||||
async processItem(item: INodeExecutionData, itemIndex: number): Promise<Document[]> {
|
||||
const mode = this.context.getNodeParameter('jsonMode', itemIndex, 'allInputData') as
|
||||
| 'allInputData'
|
||||
| 'expressionData';
|
||||
|
||||
const pointers = this.context.getNodeParameter(
|
||||
`${this.optionsPrefix}pointers`,
|
||||
itemIndex,
|
||||
'',
|
||||
) as string;
|
||||
const pointersArray = pointers.split(',').map((pointer) => pointer.trim());
|
||||
|
||||
const textSplitter = (await this.context.getInputConnectionData(
|
||||
NodeConnectionType.AiTextSplitter,
|
||||
0,
|
||||
)) as CharacterTextSplitter | undefined;
|
||||
const metadata = getMetadataFiltersValues(this.context, itemIndex) ?? [];
|
||||
|
||||
if (!item) return [];
|
||||
|
||||
let documentLoader: JSONLoader | TextLoader | null = null;
|
||||
|
||||
if (mode === 'allInputData') {
|
||||
const itemString = JSON.stringify(item.json);
|
||||
const itemBlob = new Blob([itemString], { type: 'application/json' });
|
||||
documentLoader = new JSONLoader(itemBlob, pointersArray);
|
||||
}
|
||||
|
||||
if (mode === 'expressionData') {
|
||||
const dataString = this.context.getNodeParameter('jsonData', itemIndex) as string | object;
|
||||
if (typeof dataString === 'object') {
|
||||
const itemBlob = new Blob([JSON.stringify(dataString)], { type: 'application/json' });
|
||||
documentLoader = new JSONLoader(itemBlob, pointersArray);
|
||||
}
|
||||
|
||||
if (typeof dataString === 'string') {
|
||||
const itemBlob = new Blob([dataString], { type: 'text/plain' });
|
||||
documentLoader = new TextLoader(itemBlob);
|
||||
}
|
||||
}
|
||||
|
||||
if (documentLoader === null) {
|
||||
// This should never happen
|
||||
throw new NodeOperationError(this.context.getNode(), 'Document loader is not initialized');
|
||||
}
|
||||
|
||||
const docs = textSplitter
|
||||
? await documentLoader.loadAndSplit(textSplitter)
|
||||
: await documentLoader.load();
|
||||
|
||||
if (metadata) {
|
||||
docs.forEach((doc) => {
|
||||
doc.metadata = {
|
||||
...doc.metadata,
|
||||
...metadata,
|
||||
};
|
||||
});
|
||||
}
|
||||
return docs;
|
||||
}
|
||||
}
|
||||
16
packages/@n8n/nodes-langchain/utils/helpers.ts
Normal file
16
packages/@n8n/nodes-langchain/utils/helpers.ts
Normal file
@@ -0,0 +1,16 @@
|
||||
import type { IExecuteFunctions } from 'n8n-workflow';
|
||||
|
||||
export function getMetadataFiltersValues(
|
||||
ctx: IExecuteFunctions,
|
||||
itemIndex: number,
|
||||
): Record<string, never> | undefined {
|
||||
const metadata = ctx.getNodeParameter('options.metadata.metadataValues', itemIndex, []) as Array<{
|
||||
name: string;
|
||||
value: string;
|
||||
}>;
|
||||
if (metadata.length > 0) {
|
||||
return metadata.reduce((acc, { name, value }) => ({ ...acc, [name]: value }), {});
|
||||
}
|
||||
|
||||
return undefined;
|
||||
}
|
||||
500
packages/@n8n/nodes-langchain/utils/logWrapper.ts
Normal file
500
packages/@n8n/nodes-langchain/utils/logWrapper.ts
Normal file
@@ -0,0 +1,500 @@
|
||||
import {
|
||||
NodeOperationError,
|
||||
type ConnectionTypes,
|
||||
type IExecuteFunctions,
|
||||
type INodeExecutionData,
|
||||
NodeConnectionType,
|
||||
} from 'n8n-workflow';
|
||||
|
||||
import { Tool } from 'langchain/tools';
|
||||
import type { BaseMessage, ChatResult, InputValues } from 'langchain/schema';
|
||||
import { BaseChatMessageHistory } from 'langchain/schema';
|
||||
import { BaseChatModel } from 'langchain/chat_models/base';
|
||||
import type { CallbackManagerForLLMRun } from 'langchain/callbacks';
|
||||
|
||||
import { Embeddings } from 'langchain/embeddings/base';
|
||||
import { VectorStore } from 'langchain/vectorstores/base';
|
||||
import type { Document } from 'langchain/document';
|
||||
import { TextSplitter } from 'langchain/text_splitter';
|
||||
import type { BaseDocumentLoader } from 'langchain/document_loaders/base';
|
||||
import type { BaseCallbackConfig, Callbacks } from 'langchain/dist/callbacks/manager';
|
||||
import { BaseLLM } from 'langchain/llms/base';
|
||||
import { BaseChatMemory } from 'langchain/memory';
|
||||
import type { MemoryVariables } from 'langchain/dist/memory/base';
|
||||
import { BaseRetriever } from 'langchain/schema/retriever';
|
||||
import type { FormatInstructionsOptions } from 'langchain/schema/output_parser';
|
||||
import { BaseOutputParser } from 'langchain/schema/output_parser';
|
||||
import { isObject } from 'lodash';
|
||||
import { N8nJsonLoader } from './N8nJsonLoader';
|
||||
import { N8nBinaryLoader } from './N8nBinaryLoader';
|
||||
|
||||
const errorsMap: { [key: string]: { message: string; description: string } } = {
|
||||
'You exceeded your current quota, please check your plan and billing details.': {
|
||||
message: 'OpenAI quota exceeded',
|
||||
description: 'You exceeded your current quota, please check your plan and billing details.',
|
||||
},
|
||||
};
|
||||
|
||||
export async function callMethodAsync<T>(
|
||||
this: T,
|
||||
parameters: {
|
||||
executeFunctions: IExecuteFunctions;
|
||||
connectionType: ConnectionTypes;
|
||||
currentNodeRunIndex: number;
|
||||
method: (...args: any[]) => Promise<unknown>;
|
||||
arguments: unknown[];
|
||||
},
|
||||
): Promise<unknown> {
|
||||
try {
|
||||
return await parameters.method.call(this, ...parameters.arguments);
|
||||
} catch (e) {
|
||||
const connectedNode = parameters.executeFunctions.getNode();
|
||||
|
||||
const error = new NodeOperationError(connectedNode, e, {
|
||||
functionality: 'configuration-node',
|
||||
});
|
||||
|
||||
if (errorsMap[error.message]) {
|
||||
error.description = errorsMap[error.message].description;
|
||||
error.message = errorsMap[error.message].message;
|
||||
}
|
||||
|
||||
parameters.executeFunctions.addOutputData(
|
||||
parameters.connectionType,
|
||||
parameters.currentNodeRunIndex,
|
||||
error,
|
||||
);
|
||||
if (error.message) {
|
||||
error.description = error.message;
|
||||
throw error;
|
||||
}
|
||||
throw new NodeOperationError(
|
||||
connectedNode,
|
||||
`Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`,
|
||||
{ functionality: 'configuration-node' },
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
export function callMethodSync<T>(
|
||||
this: T,
|
||||
parameters: {
|
||||
executeFunctions: IExecuteFunctions;
|
||||
connectionType: ConnectionTypes;
|
||||
currentNodeRunIndex: number;
|
||||
method: (...args: any[]) => T;
|
||||
arguments: unknown[];
|
||||
},
|
||||
): unknown {
|
||||
try {
|
||||
return parameters.method.call(this, ...parameters.arguments);
|
||||
} catch (e) {
|
||||
const connectedNode = parameters.executeFunctions.getNode();
|
||||
const error = new NodeOperationError(connectedNode, e);
|
||||
parameters.executeFunctions.addOutputData(
|
||||
parameters.connectionType,
|
||||
parameters.currentNodeRunIndex,
|
||||
error,
|
||||
);
|
||||
throw new NodeOperationError(
|
||||
connectedNode,
|
||||
`Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`,
|
||||
{ functionality: 'configuration-node' },
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
export function logWrapper(
|
||||
originalInstance:
|
||||
| Tool
|
||||
| BaseChatModel
|
||||
| BaseChatMemory
|
||||
| BaseLLM
|
||||
| BaseChatMessageHistory
|
||||
| BaseOutputParser
|
||||
| BaseRetriever
|
||||
| Embeddings
|
||||
| Document[]
|
||||
| Document
|
||||
| BaseDocumentLoader
|
||||
| TextSplitter
|
||||
| VectorStore
|
||||
| N8nBinaryLoader
|
||||
| N8nJsonLoader,
|
||||
executeFunctions: IExecuteFunctions,
|
||||
) {
|
||||
return new Proxy(originalInstance, {
|
||||
get: (target, prop) => {
|
||||
let connectionType: ConnectionTypes | undefined;
|
||||
// ========== BaseChatMemory ==========
|
||||
if (originalInstance instanceof BaseChatMemory) {
|
||||
if (prop === 'loadMemoryVariables' && 'loadMemoryVariables' in target) {
|
||||
return async (values: InputValues): Promise<MemoryVariables> => {
|
||||
connectionType = NodeConnectionType.AiMemory;
|
||||
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { action: 'loadMemoryVariables', values } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [values],
|
||||
})) as MemoryVariables;
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [
|
||||
[{ json: { action: 'loadMemoryVariables', response } }],
|
||||
]);
|
||||
return response;
|
||||
};
|
||||
} else if (
|
||||
prop === 'outputKey' &&
|
||||
'outputKey' in target &&
|
||||
target.constructor.name === 'BufferWindowMemory'
|
||||
) {
|
||||
connectionType = NodeConnectionType.AiMemory;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { action: 'chatHistory' } }],
|
||||
]);
|
||||
const response = target[prop];
|
||||
|
||||
target.chatHistory
|
||||
.getMessages()
|
||||
.then((messages) => {
|
||||
executeFunctions.addOutputData(NodeConnectionType.AiMemory, index, [
|
||||
[{ json: { action: 'chatHistory', chatHistory: messages } }],
|
||||
]);
|
||||
})
|
||||
.catch((error: Error) => {
|
||||
executeFunctions.addOutputData(NodeConnectionType.AiMemory, index, [
|
||||
[{ json: { action: 'chatHistory', error } }],
|
||||
]);
|
||||
});
|
||||
return response;
|
||||
}
|
||||
}
|
||||
|
||||
// ========== BaseChatMessageHistory ==========
|
||||
if (originalInstance instanceof BaseChatMessageHistory) {
|
||||
if (prop === 'getMessages' && 'getMessages' in target) {
|
||||
return async (): Promise<BaseMessage[]> => {
|
||||
connectionType = NodeConnectionType.AiMemory;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { action: 'getMessages' } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [],
|
||||
})) as BaseMessage[];
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [
|
||||
[{ json: { action: 'getMessages', response } }],
|
||||
]);
|
||||
return response;
|
||||
};
|
||||
} else if (prop === 'addMessage' && 'addMessage' in target) {
|
||||
return async (message: BaseMessage): Promise<void> => {
|
||||
connectionType = NodeConnectionType.AiMemory;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { action: 'addMessage', message } }],
|
||||
]);
|
||||
|
||||
await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [message],
|
||||
});
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [
|
||||
[{ json: { action: 'addMessage' } }],
|
||||
]);
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== BaseChatModel ==========
|
||||
if (originalInstance instanceof BaseLLM || originalInstance instanceof BaseChatModel) {
|
||||
if (prop === '_generate' && '_generate' in target) {
|
||||
return async (
|
||||
messages: BaseMessage[] & string[],
|
||||
options: any,
|
||||
runManager?: CallbackManagerForLLMRun,
|
||||
): Promise<ChatResult> => {
|
||||
connectionType = NodeConnectionType.AiLanguageModel;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { messages, options } }],
|
||||
]);
|
||||
|
||||
try {
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [
|
||||
messages,
|
||||
{ ...options, signal: executeFunctions.getExecutionCancelSignal() },
|
||||
runManager,
|
||||
],
|
||||
})) as ChatResult;
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
} catch (error) {
|
||||
// Mute AbortError as they are expected
|
||||
if (error?.name === 'AbortError') return { generations: [] };
|
||||
throw error;
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== BaseOutputParser ==========
|
||||
if (originalInstance instanceof BaseOutputParser) {
|
||||
if (prop === 'getFormatInstructions' && 'getFormatInstructions' in target) {
|
||||
return (options?: FormatInstructionsOptions): string => {
|
||||
connectionType = NodeConnectionType.AiOutputParser;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { action: 'getFormatInstructions' } }],
|
||||
]);
|
||||
|
||||
// @ts-ignore
|
||||
const response = callMethodSync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [options],
|
||||
}) as string;
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [
|
||||
[{ json: { action: 'getFormatInstructions', response } }],
|
||||
]);
|
||||
return response;
|
||||
};
|
||||
} else if (prop === 'parse' && 'parse' in target) {
|
||||
return async (text: string | Record<string, unknown>): Promise<unknown> => {
|
||||
connectionType = NodeConnectionType.AiOutputParser;
|
||||
const stringifiedText = isObject(text) ? JSON.stringify(text) : text;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { action: 'parse', text: stringifiedText } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [stringifiedText],
|
||||
})) as object;
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [
|
||||
[{ json: { action: 'parse', response } }],
|
||||
]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== BaseRetriever ==========
|
||||
if (originalInstance instanceof BaseRetriever) {
|
||||
if (prop === 'getRelevantDocuments' && 'getRelevantDocuments' in target) {
|
||||
return async (
|
||||
query: string,
|
||||
config?: Callbacks | BaseCallbackConfig,
|
||||
): Promise<Document[]> => {
|
||||
connectionType = NodeConnectionType.AiRetriever;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { query, config } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [query, config],
|
||||
})) as Array<Document<Record<string, any>>>;
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== Embeddings ==========
|
||||
if (originalInstance instanceof Embeddings) {
|
||||
// Docs -> Embeddings
|
||||
if (prop === 'embedDocuments' && 'embedDocuments' in target) {
|
||||
return async (documents: string[]): Promise<number[][]> => {
|
||||
connectionType = NodeConnectionType.AiEmbedding;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { documents } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [documents],
|
||||
})) as number[][];
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
// Query -> Embeddings
|
||||
if (prop === 'embedQuery' && 'embedQuery' in target) {
|
||||
return async (query: string): Promise<number[]> => {
|
||||
connectionType = NodeConnectionType.AiEmbedding;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { query } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [query],
|
||||
})) as number[];
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== N8n Loaders Process All ==========
|
||||
if (
|
||||
originalInstance instanceof N8nJsonLoader ||
|
||||
originalInstance instanceof N8nBinaryLoader
|
||||
) {
|
||||
// Process All
|
||||
if (prop === 'processAll' && 'processAll' in target) {
|
||||
return async (items: INodeExecutionData[]): Promise<number[]> => {
|
||||
connectionType = NodeConnectionType.AiDocument;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [items]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [items],
|
||||
})) as number[];
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
// Process Each
|
||||
if (prop === 'processItem' && 'processItem' in target) {
|
||||
return async (item: INodeExecutionData, itemIndex: number): Promise<number[]> => {
|
||||
connectionType = NodeConnectionType.AiDocument;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [[item]]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [item, itemIndex],
|
||||
})) as number[];
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [
|
||||
[{ json: { response }, pairedItem: { item: itemIndex } }],
|
||||
]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== TextSplitter ==========
|
||||
if (originalInstance instanceof TextSplitter) {
|
||||
if (prop === 'splitText' && 'splitText' in target) {
|
||||
return async (text: string): Promise<string[]> => {
|
||||
connectionType = NodeConnectionType.AiTextSplitter;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { textSplitter: text } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [text],
|
||||
})) as string[];
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== Tool ==========
|
||||
if (originalInstance instanceof Tool) {
|
||||
if (prop === '_call' && '_call' in target) {
|
||||
return async (query: string): Promise<string> => {
|
||||
connectionType = NodeConnectionType.AiTool;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { query } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [query],
|
||||
})) as string;
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// ========== VectorStore ==========
|
||||
if (originalInstance instanceof VectorStore) {
|
||||
if (prop === 'similaritySearch' && 'similaritySearch' in target) {
|
||||
return async (
|
||||
query: string,
|
||||
k?: number,
|
||||
// @ts-ignore
|
||||
filter?: BiquadFilterType | undefined,
|
||||
_callbacks?: Callbacks | undefined,
|
||||
): Promise<Document[]> => {
|
||||
connectionType = NodeConnectionType.AiVectorStore;
|
||||
const { index } = executeFunctions.addInputData(connectionType, [
|
||||
[{ json: { query, k, filter } }],
|
||||
]);
|
||||
|
||||
const response = (await callMethodAsync.call(target, {
|
||||
executeFunctions,
|
||||
connectionType,
|
||||
currentNodeRunIndex: index,
|
||||
method: target[prop],
|
||||
arguments: [query, k, filter, _callbacks],
|
||||
})) as Array<Document<Record<string, any>>>;
|
||||
|
||||
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
||||
|
||||
return response;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return (target as any)[prop];
|
||||
},
|
||||
});
|
||||
}
|
||||
141
packages/@n8n/nodes-langchain/utils/sharedFields.ts
Normal file
141
packages/@n8n/nodes-langchain/utils/sharedFields.ts
Normal file
@@ -0,0 +1,141 @@
|
||||
import { NodeConnectionType, type INodeProperties } from 'n8n-workflow';
|
||||
|
||||
export const metadataFilterField: INodeProperties = {
|
||||
displayName: 'Metadata Filter',
|
||||
name: 'metadata',
|
||||
type: 'fixedCollection',
|
||||
description: 'Metadata to filter the document by',
|
||||
typeOptions: {
|
||||
multipleValues: true,
|
||||
},
|
||||
default: {},
|
||||
placeholder: 'Add filter field',
|
||||
options: [
|
||||
{
|
||||
name: 'metadataValues',
|
||||
displayName: 'Fields to Set',
|
||||
values: [
|
||||
{
|
||||
displayName: 'Name',
|
||||
name: 'name',
|
||||
type: 'string',
|
||||
default: '',
|
||||
required: true,
|
||||
},
|
||||
{
|
||||
displayName: 'Value',
|
||||
name: 'value',
|
||||
type: 'string',
|
||||
default: '',
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
export function getTemplateNoticeField(templateId: number): INodeProperties {
|
||||
return {
|
||||
displayName: `Save time with an <a href="/templates/${templateId}" target="_blank">example</a> of how this node works`,
|
||||
name: 'notice',
|
||||
type: 'notice',
|
||||
default: '',
|
||||
};
|
||||
}
|
||||
|
||||
const connectionsString = {
|
||||
[NodeConnectionType.AiAgent]: {
|
||||
// Root AI view
|
||||
connection: '',
|
||||
locale: 'AI Agent',
|
||||
},
|
||||
[NodeConnectionType.AiChain]: {
|
||||
// Root AI view
|
||||
connection: '',
|
||||
locale: 'AI Chain',
|
||||
},
|
||||
[NodeConnectionType.AiDocument]: {
|
||||
connection: NodeConnectionType.AiDocument,
|
||||
locale: 'Document Loader',
|
||||
},
|
||||
[NodeConnectionType.AiVectorStore]: {
|
||||
connection: NodeConnectionType.AiVectorStore,
|
||||
locale: 'Vector Store',
|
||||
},
|
||||
[NodeConnectionType.AiRetriever]: {
|
||||
connection: NodeConnectionType.AiRetriever,
|
||||
locale: 'Vector Store Retriever',
|
||||
},
|
||||
};
|
||||
|
||||
type AllowedConnectionTypes =
|
||||
| NodeConnectionType.AiAgent
|
||||
| NodeConnectionType.AiChain
|
||||
| NodeConnectionType.AiDocument
|
||||
| NodeConnectionType.AiVectorStore
|
||||
| NodeConnectionType.AiRetriever;
|
||||
|
||||
function determineArticle(nextWord: string): string {
|
||||
// check if the next word starts with a vowel sound
|
||||
const vowels = /^[aeiouAEIOU]/;
|
||||
return vowels.test(nextWord) ? 'an' : 'a';
|
||||
}
|
||||
const getAhref = (connectionType: { connection: string; locale: string }) =>
|
||||
`<a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='${connectionType.connection}'>${connectionType.locale}</a>`;
|
||||
|
||||
export function getConnectionHintNoticeField(
|
||||
connectionTypes: AllowedConnectionTypes[],
|
||||
): INodeProperties {
|
||||
const groupedConnections = new Map<string, string[]>();
|
||||
|
||||
// group connection types by their 'connection' value
|
||||
// to not create multiple links
|
||||
connectionTypes.forEach((connectionType) => {
|
||||
const connectionString = connectionsString[connectionType].connection;
|
||||
const localeString = connectionsString[connectionType].locale;
|
||||
|
||||
if (!groupedConnections.has(connectionString)) {
|
||||
groupedConnections.set(connectionString, [localeString]);
|
||||
return;
|
||||
}
|
||||
|
||||
groupedConnections.get(connectionString)?.push(localeString);
|
||||
});
|
||||
|
||||
let displayName;
|
||||
|
||||
if (groupedConnections.size === 1) {
|
||||
const [[connection, locales]] = Array.from(groupedConnections);
|
||||
displayName = `This node must be connected to ${determineArticle(
|
||||
locales[0],
|
||||
)} ${locales[0].toLowerCase()}. <a data-action='openSelectiveNodeCreator' data-action-parameter-connectiontype='${connection}'>Insert one</a>`;
|
||||
} else {
|
||||
const ahrefs = Array.from(groupedConnections, ([connection, locales]) => {
|
||||
// If there are multiple locales, join them with ' or '
|
||||
// use determineArticle to insert the correct article
|
||||
const locale =
|
||||
locales.length > 1
|
||||
? locales
|
||||
.map((localeString, index, { length }) => {
|
||||
return (
|
||||
(index === 0 ? `${determineArticle(localeString)} ` : '') +
|
||||
(index < length - 1 ? `${localeString} or ` : localeString)
|
||||
);
|
||||
})
|
||||
.join('')
|
||||
: `${determineArticle(locales[0])} ${locales[0]}`;
|
||||
return getAhref({ connection, locale });
|
||||
});
|
||||
|
||||
displayName = `This node needs to be connected to ${ahrefs.join(' or ')}.`;
|
||||
}
|
||||
|
||||
return {
|
||||
displayName,
|
||||
name: 'notice',
|
||||
type: 'notice',
|
||||
default: '',
|
||||
typeOptions: {
|
||||
containerClass: 'ndv-connection-hint-notice',
|
||||
},
|
||||
};
|
||||
}
|
||||
Reference in New Issue
Block a user