feat: Add Cohere reranking capability to vector stores (#16014)

Co-authored-by: Yiorgis Gozadinos <yiorgis@n8n.io>
Co-authored-by: Mutasem Aldmour <mutasem@n8n.io>
This commit is contained in:
Benjamin Schroth
2025-06-05 10:16:22 +02:00
committed by GitHub
parent 47ad74d137
commit 8a1cabe62a
14 changed files with 585 additions and 20 deletions

View File

@@ -41,8 +41,13 @@ exports[`createVectorStoreNode retrieve mode supplies vector store as data 1`] =
"inputs": "={{
((parameters) => {
const mode = parameters?.mode;
const useReranker = parameters?.useReranker;
const inputs = [{ displayName: "Embedding", type: "ai_embedding", required: true, maxConnections: 1}]
if (['load', 'retrieve-as-tool'].includes(mode) && useReranker) {
inputs.push({ displayName: "Reranker", type: "ai_reranker", required: true, maxConnections: 1})
}
if (mode === 'retrieve-as-tool') {
return inputs;
}
@@ -233,6 +238,21 @@ exports[`createVectorStoreNode retrieve mode supplies vector store as data 1`] =
"name": "includeDocumentMetadata",
"type": "boolean",
},
{
"default": false,
"description": "Whether or not to rerank results",
"displayName": "Rerank Results",
"displayOptions": {
"show": {
"mode": [
"load",
"retrieve-as-tool",
],
},
},
"name": "useReranker",
"type": "boolean",
},
{
"default": "",
"description": "ID of an embedding entry",

View File

@@ -69,8 +69,13 @@ export const createVectorStoreNode = <T extends VectorStore = VectorStore>(
inputs: `={{
((parameters) => {
const mode = parameters?.mode;
const useReranker = parameters?.useReranker;
const inputs = [{ displayName: "Embedding", type: "${NodeConnectionTypes.AiEmbedding}", required: true, maxConnections: 1}]
if (['load', 'retrieve-as-tool'].includes(mode) && useReranker) {
inputs.push({ displayName: "Reranker", type: "${NodeConnectionTypes.AiReranker}", required: true, maxConnections: 1})
}
if (mode === 'retrieve-as-tool') {
return inputs;
}
@@ -202,6 +207,18 @@ export const createVectorStoreNode = <T extends VectorStore = VectorStore>(
},
},
},
{
displayName: 'Rerank Results',
name: 'useReranker',
type: 'boolean',
default: false,
description: 'Whether or not to rerank results',
displayOptions: {
show: {
mode: ['load', 'retrieve-as-tool'],
},
},
},
// ID is always used for update operation
{
displayName: 'ID',
@@ -233,7 +250,6 @@ export const createVectorStoreNode = <T extends VectorStore = VectorStore>(
*/
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
const mode = this.getNodeParameter('mode', 0) as NodeOperationMode;
// Get the embeddings model connected to this node
const embeddings = (await this.getInputConnectionData(
NodeConnectionTypes.AiEmbedding,

View File

@@ -2,10 +2,12 @@
/* eslint-disable @typescript-eslint/unbound-method */
import type { Document } from '@langchain/core/documents';
import type { Embeddings } from '@langchain/core/embeddings';
import type { BaseDocumentCompressor } from '@langchain/core/retrievers/document_compressors';
import type { VectorStore } from '@langchain/core/vectorstores';
import type { MockProxy } from 'jest-mock-extended';
import { mock } from 'jest-mock-extended';
import type { IDataObject, IExecuteFunctions } from 'n8n-workflow';
import { NodeConnectionTypes } from 'n8n-workflow';
import { logAiEvent } from '@utils/helpers';
@@ -22,6 +24,7 @@ describe('handleLoadOperation', () => {
let mockContext: MockProxy<IExecuteFunctions>;
let mockEmbeddings: MockProxy<Embeddings>;
let mockVectorStore: MockProxy<VectorStore>;
let mockReranker: MockProxy<BaseDocumentCompressor>;
let mockArgs: VectorStoreNodeConstructorArgs<VectorStore>;
let nodeParameters: Record<string, any>;
@@ -30,6 +33,7 @@ describe('handleLoadOperation', () => {
prompt: 'test search query',
topK: 3,
includeDocumentMetadata: true,
useReranker: false,
};
mockContext = mock<IExecuteFunctions>();
@@ -48,6 +52,24 @@ describe('handleLoadOperation', () => {
[{ pageContent: 'test content 3', metadata: { test: 'metadata 3' } } as Document, 0.75],
]);
mockReranker = mock<BaseDocumentCompressor>();
mockReranker.compressDocuments.mockResolvedValue([
{
pageContent: 'test content 2',
metadata: { test: 'metadata 2', relevanceScore: 0.98 },
} as Document,
{
pageContent: 'test content 1',
metadata: { test: 'metadata 1', relevanceScore: 0.92 },
} as Document,
{
pageContent: 'test content 3',
metadata: { test: 'metadata 3', relevanceScore: 0.88 },
} as Document,
]);
mockContext.getInputConnectionData.mockResolvedValue(mockReranker);
mockArgs = {
meta: {
displayName: 'Test Vector Store',
@@ -142,4 +164,82 @@ describe('handleLoadOperation', () => {
expect(mockArgs.releaseVectorStoreClient).toHaveBeenCalledWith(mockVectorStore);
});
describe('reranking functionality', () => {
beforeEach(() => {
nodeParameters.useReranker = true;
});
it('should use reranker when useReranker is true', async () => {
const result = await handleLoadOperation(mockContext, mockArgs, mockEmbeddings, 0);
expect(mockContext.getInputConnectionData).toHaveBeenCalledWith(
NodeConnectionTypes.AiReranker,
0,
);
expect(mockReranker.compressDocuments).toHaveBeenCalledWith(
[
{ pageContent: 'test content 1', metadata: { test: 'metadata 1' } },
{ pageContent: 'test content 2', metadata: { test: 'metadata 2' } },
{ pageContent: 'test content 3', metadata: { test: 'metadata 3' } },
],
'test search query',
);
expect(result).toHaveLength(3);
});
it('should return reranked documents with relevance scores', async () => {
const result = await handleLoadOperation(mockContext, mockArgs, mockEmbeddings, 0);
// First result should be the reranked first document (was second in original order)
expect((result[0].json?.document as IDataObject)?.pageContent).toEqual('test content 2');
expect(result[0].json?.score).toEqual(0.98);
// Second result should be the reranked second document (was first in original order)
expect((result[1].json?.document as IDataObject)?.pageContent).toEqual('test content 1');
expect(result[1].json?.score).toEqual(0.92);
// Third result should be the reranked third document
expect((result[2].json?.document as IDataObject)?.pageContent).toEqual('test content 3');
expect(result[2].json?.score).toEqual(0.88);
});
it('should remove relevanceScore from metadata after reranking', async () => {
const result = await handleLoadOperation(mockContext, mockArgs, mockEmbeddings, 0);
// Check that relevanceScore is not included in the metadata
expect((result[0].json?.document as IDataObject)?.metadata).toEqual({ test: 'metadata 2' });
expect((result[1].json?.document as IDataObject)?.metadata).toEqual({ test: 'metadata 1' });
expect((result[2].json?.document as IDataObject)?.metadata).toEqual({ test: 'metadata 3' });
});
it('should handle reranking with includeDocumentMetadata false', async () => {
nodeParameters.includeDocumentMetadata = false;
const result = await handleLoadOperation(mockContext, mockArgs, mockEmbeddings, 0);
expect(result[0].json?.document).not.toHaveProperty('metadata');
expect((result[0].json?.document as IDataObject)?.pageContent).toEqual('test content 2');
expect(result[0].json?.score).toEqual(0.98);
});
it('should not call reranker when useReranker is false', async () => {
nodeParameters.useReranker = false;
await handleLoadOperation(mockContext, mockArgs, mockEmbeddings, 0);
expect(mockContext.getInputConnectionData).not.toHaveBeenCalled();
expect(mockReranker.compressDocuments).not.toHaveBeenCalled();
});
it('should release vector store client even if reranking fails', async () => {
mockReranker.compressDocuments.mockRejectedValue(new Error('Reranking failed'));
await expect(handleLoadOperation(mockContext, mockArgs, mockEmbeddings, 0)).rejects.toThrow(
'Reranking failed',
);
expect(mockArgs.releaseVectorStoreClient).toHaveBeenCalledWith(mockVectorStore);
});
});
});

View File

@@ -1,11 +1,13 @@
/* eslint-disable @typescript-eslint/unbound-method */
import type { Document } from '@langchain/core/documents';
import type { Embeddings } from '@langchain/core/embeddings';
import type { BaseDocumentCompressor } from '@langchain/core/retrievers/document_compressors';
import type { VectorStore } from '@langchain/core/vectorstores';
import type { MockProxy } from 'jest-mock-extended';
import { mock } from 'jest-mock-extended';
import { DynamicTool } from 'langchain/tools';
import type { ISupplyDataFunctions } from 'n8n-workflow';
import { NodeConnectionTypes } from 'n8n-workflow';
import { logWrapper } from '@utils/logWrapper';
@@ -26,6 +28,7 @@ describe('handleRetrieveAsToolOperation', () => {
let mockContext: MockProxy<ISupplyDataFunctions>;
let mockEmbeddings: MockProxy<Embeddings>;
let mockVectorStore: MockProxy<VectorStore>;
let mockReranker: MockProxy<BaseDocumentCompressor>;
let mockArgs: VectorStoreNodeConstructorArgs<VectorStore>;
let nodeParameters: Record<string, any>;
@@ -35,6 +38,7 @@ describe('handleRetrieveAsToolOperation', () => {
toolDescription: 'Search the test knowledge base',
topK: 3,
includeDocumentMetadata: true,
useReranker: false,
};
mockContext = mock<ISupplyDataFunctions>();
@@ -60,6 +64,20 @@ describe('handleRetrieveAsToolOperation', () => {
[{ pageContent: 'test content 2', metadata: { test: 'metadata 2' } } as Document, 0.85],
]);
mockReranker = mock<BaseDocumentCompressor>();
mockReranker.compressDocuments.mockResolvedValue([
{
pageContent: 'test content 2',
metadata: { test: 'metadata 2', relevanceScore: 0.98 },
} as Document,
{
pageContent: 'test content 1',
metadata: { test: 'metadata 1', relevanceScore: 0.92 },
} as Document,
]);
mockContext.getInputConnectionData.mockResolvedValue(mockReranker);
mockArgs = {
meta: {
displayName: 'Test Vector Store',
@@ -215,4 +233,115 @@ describe('handleRetrieveAsToolOperation', () => {
// Should still release the client
expect(mockArgs.releaseVectorStoreClient).toHaveBeenCalledWith(mockVectorStore);
});
describe('reranking functionality', () => {
beforeEach(() => {
nodeParameters.useReranker = true;
});
it('should use reranker when useReranker is true', async () => {
const result = await handleRetrieveAsToolOperation(mockContext, mockArgs, mockEmbeddings, 0);
const tool = result.response as DynamicTool;
await tool.func('test query');
expect(mockContext.getInputConnectionData).toHaveBeenCalledWith(
NodeConnectionTypes.AiReranker,
0,
);
expect(mockReranker.compressDocuments).toHaveBeenCalledWith(
[
{ pageContent: 'test content 1', metadata: { test: 'metadata 1' } },
{ pageContent: 'test content 2', metadata: { test: 'metadata 2' } },
],
'test query',
);
});
it('should return reranked documents in the correct order', async () => {
const result = await handleRetrieveAsToolOperation(mockContext, mockArgs, mockEmbeddings, 0);
const tool = result.response as DynamicTool;
const toolResult = await tool.func('test query');
expect(toolResult).toHaveLength(2);
// First result should be the reranked first document (was second in original order)
const parsedFirst = JSON.parse(toolResult[0].text);
expect(parsedFirst.pageContent).toEqual('test content 2');
expect(parsedFirst.metadata).toEqual({ test: 'metadata 2' });
// Second result should be the reranked second document (was first in original order)
const parsedSecond = JSON.parse(toolResult[1].text);
expect(parsedSecond.pageContent).toEqual('test content 1');
expect(parsedSecond.metadata).toEqual({ test: 'metadata 1' });
});
it('should handle reranking with includeDocumentMetadata false', async () => {
nodeParameters.includeDocumentMetadata = false;
const result = await handleRetrieveAsToolOperation(mockContext, mockArgs, mockEmbeddings, 0);
const tool = result.response as DynamicTool;
const toolResult = await tool.func('test query');
// Parse the JSON text to verify it excludes metadata but maintains reranked order
const parsedFirst = JSON.parse(toolResult[0].text);
expect(parsedFirst).toHaveProperty('pageContent', 'test content 2');
expect(parsedFirst).not.toHaveProperty('metadata');
const parsedSecond = JSON.parse(toolResult[1].text);
expect(parsedSecond).toHaveProperty('pageContent', 'test content 1');
expect(parsedSecond).not.toHaveProperty('metadata');
});
it('should not call reranker when useReranker is false', async () => {
nodeParameters.useReranker = false;
const result = await handleRetrieveAsToolOperation(mockContext, mockArgs, mockEmbeddings, 0);
const tool = result.response as DynamicTool;
await tool.func('test query');
expect(mockContext.getInputConnectionData).not.toHaveBeenCalled();
expect(mockReranker.compressDocuments).not.toHaveBeenCalled();
});
it('should release vector store client even if reranking fails', async () => {
mockReranker.compressDocuments.mockRejectedValueOnce(new Error('Reranking failed'));
const result = await handleRetrieveAsToolOperation(mockContext, mockArgs, mockEmbeddings, 0);
const tool = result.response as DynamicTool;
await expect(tool.func('test query')).rejects.toThrow('Reranking failed');
// Should still release the client
expect(mockArgs.releaseVectorStoreClient).toHaveBeenCalledWith(mockVectorStore);
});
it('should properly handle relevanceScore from reranker metadata', async () => {
// Mock reranker to return documents with relevanceScore in different metadata structure
mockReranker.compressDocuments.mockResolvedValueOnce([
{
pageContent: 'test content 2',
metadata: { test: 'metadata 2', relevanceScore: 0.98, otherField: 'value' },
} as Document,
{
pageContent: 'test content 1',
metadata: { test: 'metadata 1', relevanceScore: 0.92 },
} as Document,
]);
const result = await handleRetrieveAsToolOperation(mockContext, mockArgs, mockEmbeddings, 0);
const tool = result.response as DynamicTool;
const toolResult = await tool.invoke('test query');
// Check that relevanceScore is used but not included in the final metadata
const parsedFirst = JSON.parse(toolResult[0].text);
expect(parsedFirst.pageContent).toEqual('test content 2');
expect(parsedFirst.metadata).toEqual({ test: 'metadata 2', otherField: 'value' });
expect(parsedFirst.metadata).not.toHaveProperty('relevanceScore');
});
});
});

View File

@@ -1,6 +1,7 @@
import type { Embeddings } from '@langchain/core/embeddings';
import type { BaseDocumentCompressor } from '@langchain/core/retrievers/document_compressors';
import type { VectorStore } from '@langchain/core/vectorstores';
import type { IExecuteFunctions, INodeExecutionData } from 'n8n-workflow';
import { NodeConnectionTypes, type IExecuteFunctions, type INodeExecutionData } from 'n8n-workflow';
import { getMetadataFiltersValues, logAiEvent } from '@utils/helpers';
@@ -29,6 +30,8 @@ export async function handleLoadOperation<T extends VectorStore = VectorStore>(
// Get the search parameters from the node
const prompt = context.getNodeParameter('prompt', itemIndex) as string;
const topK = context.getNodeParameter('topK', itemIndex, 4) as number;
const useReranker = context.getNodeParameter('useReranker', itemIndex, false) as boolean;
const includeDocumentMetadata = context.getNodeParameter(
'includeDocumentMetadata',
itemIndex,
@@ -39,7 +42,22 @@ export async function handleLoadOperation<T extends VectorStore = VectorStore>(
const embeddedPrompt = await embeddings.embedQuery(prompt);
// Get the most similar documents to the embedded prompt
const docs = await vectorStore.similaritySearchVectorWithScore(embeddedPrompt, topK, filter);
let docs = await vectorStore.similaritySearchVectorWithScore(embeddedPrompt, topK, filter);
// If reranker is used, rerank the documents
if (useReranker && docs.length > 0) {
const reranker = (await context.getInputConnectionData(
NodeConnectionTypes.AiReranker,
0,
)) as BaseDocumentCompressor;
const documents = docs.map(([doc]) => doc);
const rerankedDocuments = await reranker.compressDocuments(documents, prompt);
docs = rerankedDocuments.map((doc) => {
const { relevanceScore, ...metadata } = doc.metadata || {};
return [{ ...doc, metadata }, relevanceScore];
});
}
// Format the documents for the output
const serializedDocs = docs.map(([doc, score]) => {

View File

@@ -1,7 +1,8 @@
import type { Embeddings } from '@langchain/core/embeddings';
import type { BaseDocumentCompressor } from '@langchain/core/retrievers/document_compressors';
import type { VectorStore } from '@langchain/core/vectorstores';
import { DynamicTool } from 'langchain/tools';
import type { ISupplyDataFunctions, SupplyData } from 'n8n-workflow';
import { NodeConnectionTypes, type ISupplyDataFunctions, type SupplyData } from 'n8n-workflow';
import { getMetadataFiltersValues, nodeNameToToolName } from '@utils/helpers';
import { logWrapper } from '@utils/logWrapper';
@@ -29,6 +30,7 @@ export async function handleRetrieveAsToolOperation<T extends VectorStore = Vect
: nodeNameToToolName(node);
const topK = context.getNodeParameter('topK', itemIndex, 4) as number;
const useReranker = context.getNodeParameter('useReranker', itemIndex, false) as boolean;
const includeDocumentMetadata = context.getNodeParameter(
'includeDocumentMetadata',
itemIndex,
@@ -58,12 +60,27 @@ export async function handleRetrieveAsToolOperation<T extends VectorStore = Vect
const embeddedPrompt = await embeddings.embedQuery(input);
// Search for similar documents
const documents = await vectorStore.similaritySearchVectorWithScore(
let documents = await vectorStore.similaritySearchVectorWithScore(
embeddedPrompt,
topK,
filter,
);
// If reranker is used, rerank the documents
if (useReranker && documents.length > 0) {
const reranker = (await context.getInputConnectionData(
NodeConnectionTypes.AiReranker,
0,
)) as BaseDocumentCompressor;
const docs = documents.map(([doc]) => doc);
const rerankedDocuments = await reranker.compressDocuments(docs, input);
documents = rerankedDocuments.map((doc) => {
const { relevanceScore, ...metadata } = doc.metadata;
return [{ ...doc, metadata }, relevanceScore];
});
}
// Format the documents for the tool output
return documents
.map((document) => {