mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-17 10:02:05 +00:00
feat(Sentiment Analysis Node): Implement Sentiment Analysis node (#10184)
This commit is contained in:
@@ -0,0 +1,257 @@
|
||||
import type {
|
||||
IDataObject,
|
||||
IExecuteFunctions,
|
||||
INodeExecutionData,
|
||||
INodeParameters,
|
||||
INodeType,
|
||||
INodeTypeDescription,
|
||||
} from 'n8n-workflow';
|
||||
|
||||
import { NodeConnectionType, NodeOperationError } from 'n8n-workflow';
|
||||
|
||||
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
||||
import { HumanMessage } from '@langchain/core/messages';
|
||||
import { SystemMessagePromptTemplate, ChatPromptTemplate } from '@langchain/core/prompts';
|
||||
import { OutputFixingParser, StructuredOutputParser } from 'langchain/output_parsers';
|
||||
import { z } from 'zod';
|
||||
import { getTracingConfig } from '../../../utils/tracing';
|
||||
|
||||
const DEFAULT_SYSTEM_PROMPT_TEMPLATE =
|
||||
'You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.';
|
||||
|
||||
const DEFAULT_CATEGORIES = 'Positive, Neutral, Negative';
|
||||
const configuredOutputs = (parameters: INodeParameters, defaultCategories: string) => {
|
||||
const options = (parameters?.options ?? {}) as IDataObject;
|
||||
const categories = (options?.categories as string) ?? defaultCategories;
|
||||
const categoriesArray = categories.split(',').map((cat) => cat.trim());
|
||||
|
||||
const ret = categoriesArray.map((cat) => ({ type: NodeConnectionType.Main, displayName: cat }));
|
||||
return ret;
|
||||
};
|
||||
|
||||
export class SentimentAnalysis implements INodeType {
|
||||
description: INodeTypeDescription = {
|
||||
displayName: 'Sentiment Analysis',
|
||||
name: 'sentimentAnalysis',
|
||||
icon: 'fa:balance-scale-left',
|
||||
iconColor: 'black',
|
||||
group: ['transform'],
|
||||
version: 1,
|
||||
description: 'Analyze the sentiment of your text',
|
||||
codex: {
|
||||
categories: ['AI'],
|
||||
subcategories: {
|
||||
AI: ['Chains', 'Root Nodes'],
|
||||
},
|
||||
resources: {
|
||||
primaryDocumentation: [
|
||||
{
|
||||
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/',
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
defaults: {
|
||||
name: 'Sentiment Analysis',
|
||||
},
|
||||
inputs: [
|
||||
{ displayName: '', type: NodeConnectionType.Main },
|
||||
{
|
||||
displayName: 'Model',
|
||||
maxConnections: 1,
|
||||
type: NodeConnectionType.AiLanguageModel,
|
||||
required: true,
|
||||
},
|
||||
],
|
||||
outputs: `={{(${configuredOutputs})($parameter, "${DEFAULT_CATEGORIES}")}}`,
|
||||
properties: [
|
||||
{
|
||||
displayName: 'Text to Analyze',
|
||||
name: 'inputText',
|
||||
type: 'string',
|
||||
required: true,
|
||||
default: '',
|
||||
description: 'Use an expression to reference data in previous nodes or enter static text',
|
||||
typeOptions: {
|
||||
rows: 2,
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName:
|
||||
'Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.',
|
||||
name: 'detailedResultsNotice',
|
||||
type: 'notice',
|
||||
default: '',
|
||||
displayOptions: {
|
||||
show: {
|
||||
'/options.includeDetailedResults': [true],
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Options',
|
||||
name: 'options',
|
||||
type: 'collection',
|
||||
default: {},
|
||||
placeholder: 'Add Option',
|
||||
options: [
|
||||
{
|
||||
displayName: 'Sentiment Categories',
|
||||
name: 'categories',
|
||||
type: 'string',
|
||||
default: DEFAULT_CATEGORIES,
|
||||
description: 'A comma-separated list of categories to analyze',
|
||||
noDataExpression: true,
|
||||
typeOptions: {
|
||||
rows: 2,
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'System Prompt Template',
|
||||
name: 'systemPromptTemplate',
|
||||
type: 'string',
|
||||
default: DEFAULT_SYSTEM_PROMPT_TEMPLATE,
|
||||
description: 'String to use directly as the system prompt template',
|
||||
typeOptions: {
|
||||
rows: 6,
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Include Detailed Results',
|
||||
name: 'includeDetailedResults',
|
||||
type: 'boolean',
|
||||
default: false,
|
||||
description:
|
||||
'Whether to include sentiment strength and confidence scores in the output',
|
||||
},
|
||||
{
|
||||
displayName: 'Enable Auto-Fixing',
|
||||
name: 'enableAutoFixing',
|
||||
type: 'boolean',
|
||||
default: true,
|
||||
description: 'Whether to enable auto-fixing for the output parser',
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
||||
const items = this.getInputData();
|
||||
|
||||
const llm = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const returnData: INodeExecutionData[][] = [];
|
||||
|
||||
for (let i = 0; i < items.length; i++) {
|
||||
try {
|
||||
const sentimentCategories = this.getNodeParameter(
|
||||
'options.categories',
|
||||
i,
|
||||
DEFAULT_CATEGORIES,
|
||||
) as string;
|
||||
|
||||
const categories = sentimentCategories
|
||||
.split(',')
|
||||
.map((cat) => cat.trim())
|
||||
.filter(Boolean);
|
||||
|
||||
if (categories.length === 0) {
|
||||
throw new NodeOperationError(this.getNode(), 'No sentiment categories provided', {
|
||||
itemIndex: i,
|
||||
});
|
||||
}
|
||||
|
||||
// Initialize returnData with empty arrays for each category
|
||||
if (returnData.length === 0) {
|
||||
returnData.push(...Array.from({ length: categories.length }, () => []));
|
||||
}
|
||||
|
||||
const options = this.getNodeParameter('options', i, {}) as {
|
||||
systemPromptTemplate?: string;
|
||||
includeDetailedResults?: boolean;
|
||||
enableAutoFixing?: boolean;
|
||||
};
|
||||
|
||||
const schema = z.object({
|
||||
sentiment: z.enum(categories as [string, ...string[]]),
|
||||
strength: z
|
||||
.number()
|
||||
.min(0)
|
||||
.max(1)
|
||||
.describe('Strength score for sentiment in relation to the category'),
|
||||
confidence: z.number().min(0).max(1),
|
||||
});
|
||||
|
||||
const structuredParser = StructuredOutputParser.fromZodSchema(schema);
|
||||
|
||||
const parser = options.enableAutoFixing
|
||||
? OutputFixingParser.fromLLM(llm, structuredParser)
|
||||
: structuredParser;
|
||||
|
||||
const systemPromptTemplate = SystemMessagePromptTemplate.fromTemplate(
|
||||
`${options.systemPromptTemplate ?? DEFAULT_SYSTEM_PROMPT_TEMPLATE}
|
||||
{format_instructions}`,
|
||||
);
|
||||
|
||||
const input = this.getNodeParameter('inputText', i) as string;
|
||||
const inputPrompt = new HumanMessage(input);
|
||||
const messages = [
|
||||
await systemPromptTemplate.format({
|
||||
categories: sentimentCategories,
|
||||
format_instructions: parser.getFormatInstructions(),
|
||||
}),
|
||||
inputPrompt,
|
||||
];
|
||||
|
||||
const prompt = ChatPromptTemplate.fromMessages(messages);
|
||||
const chain = prompt.pipe(llm).pipe(parser).withConfig(getTracingConfig(this));
|
||||
|
||||
try {
|
||||
const output = await chain.invoke(messages);
|
||||
const sentimentIndex = categories.findIndex(
|
||||
(s) => s.toLowerCase() === output.sentiment.toLowerCase(),
|
||||
);
|
||||
|
||||
if (sentimentIndex !== -1) {
|
||||
const resultItem = { ...items[i] };
|
||||
const sentimentAnalysis: IDataObject = {
|
||||
category: output.sentiment,
|
||||
};
|
||||
if (options.includeDetailedResults) {
|
||||
sentimentAnalysis.strength = output.strength;
|
||||
sentimentAnalysis.confidence = output.confidence;
|
||||
}
|
||||
resultItem.json = {
|
||||
...resultItem.json,
|
||||
sentimentAnalysis,
|
||||
};
|
||||
returnData[sentimentIndex].push(resultItem);
|
||||
}
|
||||
} catch (error) {
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
'Error during parsing of LLM output, please check your LLM model and configuration',
|
||||
{
|
||||
itemIndex: i,
|
||||
},
|
||||
);
|
||||
}
|
||||
} catch (error) {
|
||||
if (this.continueOnFail(error)) {
|
||||
const executionErrorData = this.helpers.constructExecutionMetaData(
|
||||
this.helpers.returnJsonArray({ error: error.message }),
|
||||
{ itemData: { item: i } },
|
||||
);
|
||||
returnData[0].push(...executionErrorData);
|
||||
continue;
|
||||
}
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
return returnData;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user