mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-17 18:12:04 +00:00
feat(n8n Evaluation Node): Add pre-defined metrics to the "Set Metrics" operation (#17127)
This commit is contained in:
353
packages/nodes-base/nodes/Evaluation/utils/metricHandlers.ts
Normal file
353
packages/nodes-base/nodes/Evaluation/utils/metricHandlers.ts
Normal file
@@ -0,0 +1,353 @@
|
||||
import {
|
||||
ChatPromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
} from '@langchain/core/prompts';
|
||||
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
||||
import { distance } from 'fastest-levenshtein';
|
||||
import { NodeOperationError, nodeNameToToolName } from 'n8n-workflow';
|
||||
import type {
|
||||
FieldType,
|
||||
AssignmentCollectionValue,
|
||||
IDataObject,
|
||||
IExecuteFunctions,
|
||||
} from 'n8n-workflow';
|
||||
import { z } from 'zod';
|
||||
|
||||
import { validateEntry } from '../../Set/v2/helpers/utils';
|
||||
import {
|
||||
CORRECTNESS_PROMPT,
|
||||
CORRECTNESS_INPUT_PROMPT,
|
||||
HELPFULNESS_PROMPT,
|
||||
HELPFULNESS_INPUT_PROMPT,
|
||||
} from '../Evaluation/CannedMetricPrompts.ee';
|
||||
|
||||
export const metricHandlers = {
|
||||
async customMetrics(this: IExecuteFunctions, i: number): Promise<IDataObject> {
|
||||
const dataToSave = this.getNodeParameter('metrics', i, {}) as AssignmentCollectionValue;
|
||||
|
||||
return Object.fromEntries(
|
||||
(dataToSave?.assignments ?? []).map((assignment) => {
|
||||
const assignmentValue =
|
||||
typeof assignment.value === 'number' ? assignment.value : Number(assignment.value);
|
||||
|
||||
if (isNaN(assignmentValue)) {
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
`Value for '${assignment.name}' isn't a number`,
|
||||
{
|
||||
description: `It's currently '${assignment.value}'. Metrics must be numeric.`,
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
if (!assignment.name || isNaN(assignmentValue)) {
|
||||
throw new NodeOperationError(this.getNode(), 'Metric name missing', {
|
||||
description: 'Make sure each metric you define has a name',
|
||||
});
|
||||
}
|
||||
|
||||
const { name, value } = validateEntry(
|
||||
assignment.name,
|
||||
assignment.type as FieldType,
|
||||
assignmentValue,
|
||||
this.getNode(),
|
||||
i,
|
||||
false,
|
||||
1,
|
||||
);
|
||||
|
||||
return [name, value];
|
||||
}),
|
||||
);
|
||||
},
|
||||
|
||||
async toolsUsed(this: IExecuteFunctions, i: number): Promise<IDataObject> {
|
||||
const expectedToolsParam = this.getNodeParameter('expectedTools', i, '');
|
||||
const expectedToolsString = (expectedToolsParam as string)?.trim() || '';
|
||||
const expectedTools: string[] = expectedToolsString
|
||||
? expectedToolsString
|
||||
.split(',')
|
||||
.map((tool) => tool.trim())
|
||||
.filter((tool) => tool !== '')
|
||||
: [];
|
||||
|
||||
const intermediateSteps = this.getNodeParameter('intermediateSteps', i, {}) as Array<{
|
||||
action: { tool: string };
|
||||
}>;
|
||||
|
||||
if (!expectedTools || expectedTools.length === 0) {
|
||||
throw new NodeOperationError(this.getNode(), 'Expected tool name missing', {
|
||||
description:
|
||||
'Make sure you add at least one expected tool name (comma-separated if multiple)',
|
||||
});
|
||||
}
|
||||
if (!intermediateSteps || !Array.isArray(intermediateSteps)) {
|
||||
throw new NodeOperationError(this.getNode(), 'Intermediate steps missing', {
|
||||
description:
|
||||
"Make sure to enable returning intermediate steps in your agent node's options, then map them in here",
|
||||
});
|
||||
}
|
||||
|
||||
// Convert user-entered tool names to the format used in intermediate steps (case-insensitive)
|
||||
const normalizedExpectedTools = expectedTools.map((tool) =>
|
||||
nodeNameToToolName(tool).toLowerCase(),
|
||||
);
|
||||
|
||||
// Calculate individual tool usage (1 if used, 0 if not used)
|
||||
const toolUsageScores = normalizedExpectedTools.map((normalizedTool) => {
|
||||
return intermediateSteps.some((step) => {
|
||||
// Handle malformed intermediate steps gracefully
|
||||
if (!step || !step.action || typeof step.action.tool !== 'string') {
|
||||
return false;
|
||||
}
|
||||
return step.action.tool.toLowerCase() === normalizedTool;
|
||||
})
|
||||
? 1
|
||||
: 0;
|
||||
});
|
||||
|
||||
// Calculate the average of all tool usage scores
|
||||
const averageScore =
|
||||
toolUsageScores.reduce((sum: number, score: number) => sum + score, 0) /
|
||||
toolUsageScores.length;
|
||||
|
||||
const metricName = this.getNodeParameter('options.metricName', i, 'Tools Used') as string;
|
||||
|
||||
return {
|
||||
[metricName]: averageScore,
|
||||
};
|
||||
},
|
||||
|
||||
async categorization(this: IExecuteFunctions, i: number): Promise<IDataObject> {
|
||||
const expectedAnswer = (this.getNodeParameter('expectedAnswer', i, '') as string)
|
||||
.toString()
|
||||
.trim();
|
||||
const actualAnswer = (this.getNodeParameter('actualAnswer', i, '') as string).toString().trim();
|
||||
|
||||
if (!expectedAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Expected answer is missing', {
|
||||
description: 'Make sure to fill in an expected answer',
|
||||
});
|
||||
}
|
||||
if (!actualAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Actual answer is missing', {
|
||||
description: 'Make sure to fill in an actual answer',
|
||||
});
|
||||
}
|
||||
|
||||
const metricName = this.getNodeParameter('options.metricName', i, 'Categorization') as string;
|
||||
|
||||
return {
|
||||
[metricName]: expectedAnswer === actualAnswer ? 1 : 0,
|
||||
};
|
||||
},
|
||||
|
||||
async stringSimilarity(this: IExecuteFunctions, i: number): Promise<IDataObject> {
|
||||
const expectedAnswer = (this.getNodeParameter('expectedAnswer', i, '') as string)
|
||||
.toString()
|
||||
.trim();
|
||||
const actualAnswer = (this.getNodeParameter('actualAnswer', i, '') as string).toString().trim();
|
||||
|
||||
if (!expectedAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Expected answer is missing', {
|
||||
description: 'Make sure to fill in an expected answer',
|
||||
});
|
||||
}
|
||||
if (!actualAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Actual answer is missing', {
|
||||
description: 'Make sure to fill in an actual answer',
|
||||
});
|
||||
}
|
||||
|
||||
const metricName = this.getNodeParameter(
|
||||
'options.metricName',
|
||||
i,
|
||||
'String similarity',
|
||||
) as string;
|
||||
|
||||
return {
|
||||
[metricName]: distance(expectedAnswer, actualAnswer),
|
||||
};
|
||||
},
|
||||
|
||||
async helpfulness(this: IExecuteFunctions, i: number): Promise<IDataObject> {
|
||||
const userQuery = (this.getNodeParameter('userQuery', i, '') as string).toString().trim();
|
||||
const actualAnswer = (this.getNodeParameter('actualAnswer', i, '') as string).toString().trim();
|
||||
|
||||
if (!userQuery) {
|
||||
throw new NodeOperationError(this.getNode(), 'User query is missing', {
|
||||
description: 'Make sure to fill in the user query in the User Query field',
|
||||
});
|
||||
}
|
||||
if (!actualAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Response is missing', {
|
||||
description: 'Make sure to fill in the response to evaluate in the Response field',
|
||||
});
|
||||
}
|
||||
|
||||
// Get the connected LLM model
|
||||
const llm = (await this.getInputConnectionData('ai_languageModel', 0)) as BaseLanguageModel;
|
||||
|
||||
if (!llm) {
|
||||
throw new NodeOperationError(this.getNode(), 'No language model connected', {
|
||||
description: 'Connect a language model to the Model input to use the helpfulness metric',
|
||||
});
|
||||
}
|
||||
|
||||
// Get the system prompt and input prompt template, using defaults if not provided
|
||||
const systemPrompt = this.getNodeParameter('prompt', i, HELPFULNESS_PROMPT) as string;
|
||||
const inputPromptTemplate = this.getNodeParameter(
|
||||
'options.inputPrompt',
|
||||
i,
|
||||
HELPFULNESS_INPUT_PROMPT[0],
|
||||
) as string;
|
||||
|
||||
// Define the expected response schema
|
||||
const responseSchema = z.object({
|
||||
extended_reasoning: z
|
||||
.string()
|
||||
.describe('detailed step-by-step analysis of the response helpfulness'),
|
||||
reasoning_summary: z.string().describe('one sentence summary of the response helpfulness'),
|
||||
score: z
|
||||
.number()
|
||||
.int()
|
||||
.min(1)
|
||||
.max(5)
|
||||
.describe('integer from 1 to 5 representing the helpfulness score'),
|
||||
});
|
||||
|
||||
// Create LangChain prompt templates
|
||||
const systemMessageTemplate = SystemMessagePromptTemplate.fromTemplate('{systemPrompt}');
|
||||
const humanMessageTemplate = HumanMessagePromptTemplate.fromTemplate(inputPromptTemplate);
|
||||
|
||||
// Create the chat prompt template
|
||||
const chatPrompt = ChatPromptTemplate.fromMessages([
|
||||
systemMessageTemplate,
|
||||
humanMessageTemplate,
|
||||
]);
|
||||
|
||||
// Create chain with structured output
|
||||
if (!llm.withStructuredOutput) {
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
'Language model does not support structured output',
|
||||
{
|
||||
description:
|
||||
'The connected language model does not support structured output. Please use a compatible model.',
|
||||
},
|
||||
);
|
||||
}
|
||||
const chain = chatPrompt.pipe(llm.withStructuredOutput(responseSchema));
|
||||
|
||||
try {
|
||||
const response = await chain.invoke({
|
||||
systemPrompt,
|
||||
user_query: userQuery,
|
||||
actual_answer: actualAnswer,
|
||||
});
|
||||
|
||||
const metricName = this.getNodeParameter('options.metricName', i, 'Helpfulness') as string;
|
||||
|
||||
// Return the score as the main metric
|
||||
return {
|
||||
[metricName]: response.score,
|
||||
};
|
||||
} catch (error) {
|
||||
throw new NodeOperationError(this.getNode(), 'Failed to evaluate helpfulness', {
|
||||
description: `Error from language model: ${error instanceof Error ? error.message : String(error)}`,
|
||||
});
|
||||
}
|
||||
},
|
||||
|
||||
async correctness(this: IExecuteFunctions, i: number): Promise<IDataObject> {
|
||||
const expectedAnswer = (this.getNodeParameter('expectedAnswer', i, '') as string)
|
||||
.toString()
|
||||
.trim();
|
||||
const actualAnswer = (this.getNodeParameter('actualAnswer', i, '') as string).toString().trim();
|
||||
|
||||
if (!expectedAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Expected answer is missing', {
|
||||
description: 'Make sure to fill in an expected answer',
|
||||
});
|
||||
}
|
||||
if (!actualAnswer) {
|
||||
throw new NodeOperationError(this.getNode(), 'Actual answer is missing', {
|
||||
description: 'Make sure to fill in an actual answer',
|
||||
});
|
||||
}
|
||||
|
||||
// Get the connected LLM model
|
||||
const llm = (await this.getInputConnectionData('ai_languageModel', 0)) as BaseLanguageModel;
|
||||
|
||||
if (!llm) {
|
||||
throw new NodeOperationError(this.getNode(), 'No language model connected', {
|
||||
description: 'Connect a language model to the Model input to use the correctness metric',
|
||||
});
|
||||
}
|
||||
|
||||
// Get the system prompt and input prompt template, using defaults if not provided
|
||||
const systemPrompt = this.getNodeParameter('prompt', i, CORRECTNESS_PROMPT) as string;
|
||||
const inputPromptTemplate = this.getNodeParameter(
|
||||
'options.inputPrompt',
|
||||
i,
|
||||
CORRECTNESS_INPUT_PROMPT[0],
|
||||
) as string;
|
||||
|
||||
// Define the expected response schema
|
||||
const responseSchema = z.object({
|
||||
extended_reasoning: z
|
||||
.string()
|
||||
.describe('detailed step-by-step analysis of factual accuracy and similarity'),
|
||||
reasoning_summary: z.string().describe('one sentence summary focusing on key differences'),
|
||||
score: z
|
||||
.number()
|
||||
.int()
|
||||
.min(1)
|
||||
.max(5)
|
||||
.describe('integer from 1 to 5 representing the similarity score'),
|
||||
});
|
||||
|
||||
// Create LangChain prompt templates
|
||||
const systemMessageTemplate = SystemMessagePromptTemplate.fromTemplate('{systemPrompt}');
|
||||
const humanMessageTemplate = HumanMessagePromptTemplate.fromTemplate(inputPromptTemplate);
|
||||
|
||||
// Create the chat prompt template
|
||||
const chatPrompt = ChatPromptTemplate.fromMessages([
|
||||
systemMessageTemplate,
|
||||
humanMessageTemplate,
|
||||
]);
|
||||
|
||||
// Create chain with structured output
|
||||
if (!llm.withStructuredOutput) {
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
'Language model does not support structured output',
|
||||
{
|
||||
description:
|
||||
'The connected language model does not support structured output. Please use a compatible model.',
|
||||
},
|
||||
);
|
||||
}
|
||||
const chain = chatPrompt.pipe(llm.withStructuredOutput(responseSchema));
|
||||
|
||||
try {
|
||||
const response = await chain.invoke({
|
||||
systemPrompt,
|
||||
actual_answer: actualAnswer,
|
||||
expected_answer: expectedAnswer,
|
||||
});
|
||||
|
||||
const metricName = this.getNodeParameter('options.metricName', i, 'Correctness') as string;
|
||||
|
||||
// Return the score as the main metric
|
||||
return {
|
||||
[metricName]: response.score,
|
||||
};
|
||||
} catch (error) {
|
||||
throw new NodeOperationError(this.getNode(), 'Failed to evaluate correctness', {
|
||||
description: `Error from language model: ${error instanceof Error ? error.message : String(error)}`,
|
||||
});
|
||||
}
|
||||
},
|
||||
};
|
||||
Reference in New Issue
Block a user