mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-17 10:02:05 +00:00
fix(Token Splitter Node): Prevent tiktoken blocking on repetitive content (#16769)
This commit is contained in:
176
packages/@n8n/nodes-langchain/utils/tokenizer/token-estimator.ts
Normal file
176
packages/@n8n/nodes-langchain/utils/tokenizer/token-estimator.ts
Normal file
@@ -0,0 +1,176 @@
|
||||
/**
|
||||
* Token estimation utilities for handling text without using tiktoken.
|
||||
* This is used as a fallback when tiktoken would be too slow (e.g., with repetitive content).
|
||||
*/
|
||||
|
||||
import type { TiktokenModel } from 'js-tiktoken';
|
||||
|
||||
import { encodingForModel } from './tiktoken';
|
||||
import { hasLongSequentialRepeat } from '../helpers';
|
||||
|
||||
/**
|
||||
* Model-specific average characters per token ratios.
|
||||
* These are approximate values based on typical English text.
|
||||
*/
|
||||
const MODEL_CHAR_PER_TOKEN_RATIOS: Record<string, number> = {
|
||||
'gpt-4o': 3.8,
|
||||
'gpt-4': 4.0,
|
||||
'gpt-3.5-turbo': 4.0,
|
||||
cl100k_base: 4.0,
|
||||
o200k_base: 3.5,
|
||||
p50k_base: 4.2,
|
||||
r50k_base: 4.2,
|
||||
};
|
||||
|
||||
/**
|
||||
* Estimates the number of tokens in a text based on character count.
|
||||
* This is much faster than tiktoken but less accurate.
|
||||
*
|
||||
* @param text The text to estimate tokens for
|
||||
* @param model The model or encoding name (optional)
|
||||
* @returns Estimated number of tokens
|
||||
*/
|
||||
export function estimateTokensByCharCount(text: string, model: string = 'cl100k_base'): number {
|
||||
try {
|
||||
// Validate input
|
||||
if (!text || typeof text !== 'string' || text.length === 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Get the ratio for the specific model, or use default
|
||||
const charsPerToken = MODEL_CHAR_PER_TOKEN_RATIOS[model] || 4.0;
|
||||
|
||||
// Validate ratio
|
||||
if (!Number.isFinite(charsPerToken) || charsPerToken <= 0) {
|
||||
// Fallback to default ratio
|
||||
const estimatedTokens = Math.ceil(text.length / 4.0);
|
||||
return estimatedTokens;
|
||||
}
|
||||
|
||||
// Calculate estimated tokens
|
||||
const estimatedTokens = Math.ceil(text.length / charsPerToken);
|
||||
|
||||
return estimatedTokens;
|
||||
} catch (error) {
|
||||
// Return conservative estimate on error
|
||||
return Math.ceil((text?.length || 0) / 4.0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Estimates tokens for text splitting purposes.
|
||||
* Returns chunk boundaries based on character positions rather than token positions.
|
||||
*
|
||||
* @param text The text to split
|
||||
* @param chunkSize Target chunk size in tokens
|
||||
* @param chunkOverlap Overlap between chunks in tokens
|
||||
* @param model The model or encoding name (optional)
|
||||
* @returns Array of text chunks
|
||||
*/
|
||||
export function estimateTextSplitsByTokens(
|
||||
text: string,
|
||||
chunkSize: number,
|
||||
chunkOverlap: number,
|
||||
model: string = 'cl100k_base',
|
||||
): string[] {
|
||||
try {
|
||||
// Validate inputs
|
||||
if (!text || typeof text !== 'string' || text.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
// Validate numeric parameters
|
||||
if (!Number.isFinite(chunkSize) || chunkSize <= 0) {
|
||||
// Return whole text as single chunk if invalid chunk size
|
||||
return [text];
|
||||
}
|
||||
|
||||
// Ensure overlap is valid and less than chunk size
|
||||
const validOverlap =
|
||||
Number.isFinite(chunkOverlap) && chunkOverlap >= 0
|
||||
? Math.min(chunkOverlap, chunkSize - 1)
|
||||
: 0;
|
||||
|
||||
const charsPerToken = MODEL_CHAR_PER_TOKEN_RATIOS[model] || 4.0;
|
||||
const chunkSizeInChars = Math.floor(chunkSize * charsPerToken);
|
||||
const overlapInChars = Math.floor(validOverlap * charsPerToken);
|
||||
|
||||
const chunks: string[] = [];
|
||||
let start = 0;
|
||||
|
||||
while (start < text.length) {
|
||||
const end = Math.min(start + chunkSizeInChars, text.length);
|
||||
chunks.push(text.slice(start, end));
|
||||
|
||||
if (end >= text.length) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Move to next chunk with overlap
|
||||
start = Math.max(end - overlapInChars, start + 1);
|
||||
}
|
||||
|
||||
return chunks;
|
||||
} catch (error) {
|
||||
// Return text as single chunk on error
|
||||
return text ? [text] : [];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Estimates the total number of tokens for a list of strings.
|
||||
* Uses tiktoken for normal text but falls back to character-based estimation
|
||||
* for repetitive content or on errors.
|
||||
*
|
||||
* @param list Array of strings to estimate tokens for
|
||||
* @param model The model or encoding name to use for estimation
|
||||
* @returns Total estimated number of tokens across all strings
|
||||
*/
|
||||
export async function estimateTokensFromStringList(
|
||||
list: string[],
|
||||
model: TiktokenModel,
|
||||
): Promise<number> {
|
||||
try {
|
||||
// Validate input
|
||||
if (!Array.isArray(list)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
const encoder = await encodingForModel(model);
|
||||
const encodedListLength = await Promise.all(
|
||||
list.map(async (text) => {
|
||||
try {
|
||||
// Handle null/undefined text
|
||||
if (!text || typeof text !== 'string') {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Check for repetitive content
|
||||
if (hasLongSequentialRepeat(text)) {
|
||||
const estimatedTokens = estimateTokensByCharCount(text, model);
|
||||
return estimatedTokens;
|
||||
}
|
||||
|
||||
// Use tiktoken for normal text
|
||||
try {
|
||||
const tokens = encoder.encode(text);
|
||||
return tokens.length;
|
||||
} catch (encodingError) {
|
||||
// Fall back to estimation if tiktoken fails
|
||||
return estimateTokensByCharCount(text, model);
|
||||
}
|
||||
} catch (itemError) {
|
||||
// Return 0 for individual item errors
|
||||
return 0;
|
||||
}
|
||||
}),
|
||||
);
|
||||
|
||||
const totalTokens = encodedListLength.reduce((acc, curr) => acc + curr, 0);
|
||||
|
||||
return totalTokens;
|
||||
} catch (error) {
|
||||
// Return 0 on complete failure
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user