fix(Token Splitter Node): Prevent tiktoken blocking on repetitive content (#16769)

This commit is contained in:
oleg
2025-06-27 16:08:14 +02:00
committed by GitHub
parent edf0fec444
commit c5ec056eb5
7 changed files with 812 additions and 27 deletions

View File

@@ -13,7 +13,7 @@ import type { IDataObject, ISupplyDataFunctions, JsonObject } from 'n8n-workflow
import { NodeConnectionTypes, NodeError, NodeOperationError } from 'n8n-workflow'; import { NodeConnectionTypes, NodeError, NodeOperationError } from 'n8n-workflow';
import { logAiEvent } from '@utils/helpers'; import { logAiEvent } from '@utils/helpers';
import { encodingForModel } from '@utils/tokenizer/tiktoken'; import { estimateTokensFromStringList } from '@utils/tokenizer/token-estimator';
type TokensUsageParser = (llmOutput: LLMResult['llmOutput']) => { type TokensUsageParser = (llmOutput: LLMResult['llmOutput']) => {
completionTokens: number; completionTokens: number;
@@ -84,13 +84,7 @@ export class N8nLlmTracing extends BaseCallbackHandler {
async estimateTokensFromStringList(list: string[]) { async estimateTokensFromStringList(list: string[]) {
const embeddingModel = getModelNameForTiktoken(TIKTOKEN_ESTIMATE_MODEL); const embeddingModel = getModelNameForTiktoken(TIKTOKEN_ESTIMATE_MODEL);
const encoder = await encodingForModel(embeddingModel); return await estimateTokensFromStringList(list, embeddingModel);
const encodedListLength = await Promise.all(
list.map(async (text) => encoder.encode(text).length),
);
return encodedListLength.reduce((acc, curr) => acc + curr, 0);
} }
async handleLLMEnd(output: LLMResult, runId: string) { async handleLLMEnd(output: LLMResult, runId: string) {

View File

@@ -3,7 +3,9 @@ import type { TokenTextSplitterParams } from '@langchain/textsplitters';
import { TextSplitter } from '@langchain/textsplitters'; import { TextSplitter } from '@langchain/textsplitters';
import type * as tiktoken from 'js-tiktoken'; import type * as tiktoken from 'js-tiktoken';
import { hasLongSequentialRepeat } from '@utils/helpers';
import { getEncoding } from '@utils/tokenizer/tiktoken'; import { getEncoding } from '@utils/tokenizer/tiktoken';
import { estimateTextSplitsByTokens } from '@utils/tokenizer/token-estimator';
/** /**
* Implementation of splitter which looks at tokens. * Implementation of splitter which looks at tokens.
@@ -32,26 +34,61 @@ export class TokenTextSplitter extends TextSplitter implements TokenTextSplitter
} }
async splitText(text: string): Promise<string[]> { async splitText(text: string): Promise<string[]> {
try {
// Validate input
if (!text || typeof text !== 'string') {
return [];
}
// Check for repetitive content
if (hasLongSequentialRepeat(text)) {
const splits = estimateTextSplitsByTokens(
text,
this.chunkSize,
this.chunkOverlap,
this.encodingName,
);
return splits;
}
// Use tiktoken for normal text
try {
if (!this.tokenizer) { if (!this.tokenizer) {
this.tokenizer = await getEncoding(this.encodingName); this.tokenizer = await getEncoding(this.encodingName);
} }
const splits: string[] = []; const splits: string[] = [];
const input_ids = this.tokenizer.encode(text, this.allowedSpecial, this.disallowedSpecial); const input_ids = this.tokenizer.encode(text, this.allowedSpecial, this.disallowedSpecial);
let start_idx = 0; let start_idx = 0;
let chunkCount = 0;
while (start_idx < input_ids.length) { while (start_idx < input_ids.length) {
if (start_idx > 0) { if (start_idx > 0) {
start_idx -= this.chunkOverlap; start_idx = Math.max(0, start_idx - this.chunkOverlap);
} }
const end_idx = Math.min(start_idx + this.chunkSize, input_ids.length); const end_idx = Math.min(start_idx + this.chunkSize, input_ids.length);
const chunk_ids = input_ids.slice(start_idx, end_idx); const chunk_ids = input_ids.slice(start_idx, end_idx);
splits.push(this.tokenizer.decode(chunk_ids)); splits.push(this.tokenizer.decode(chunk_ids));
chunkCount++;
start_idx = end_idx; start_idx = end_idx;
} }
return splits; return splits;
} catch (tiktokenError) {
// Fall back to character-based splitting if tiktoken fails
return estimateTextSplitsByTokens(
text,
this.chunkSize,
this.chunkOverlap,
this.encodingName,
);
}
} catch (error) {
// Return empty array on complete failure
return [];
}
} }
} }

View File

@@ -1,7 +1,13 @@
import { OperationalError } from 'n8n-workflow';
import * as helpers from '../../../../utils/helpers';
import * as tiktokenUtils from '../../../../utils/tokenizer/tiktoken'; import * as tiktokenUtils from '../../../../utils/tokenizer/tiktoken';
import * as tokenEstimator from '../../../../utils/tokenizer/token-estimator';
import { TokenTextSplitter } from '../TokenTextSplitter'; import { TokenTextSplitter } from '../TokenTextSplitter';
jest.mock('../../../../utils/tokenizer/tiktoken'); jest.mock('../../../../utils/tokenizer/tiktoken');
jest.mock('../../../../utils/helpers');
jest.mock('../../../../utils/tokenizer/token-estimator');
describe('TokenTextSplitter', () => { describe('TokenTextSplitter', () => {
let mockTokenizer: jest.Mocked<{ let mockTokenizer: jest.Mocked<{
@@ -15,6 +21,8 @@ describe('TokenTextSplitter', () => {
decode: jest.fn(), decode: jest.fn(),
}; };
(tiktokenUtils.getEncoding as jest.Mock).mockResolvedValue(mockTokenizer); (tiktokenUtils.getEncoding as jest.Mock).mockResolvedValue(mockTokenizer);
// Default mock for hasLongSequentialRepeat - no repetition
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(false);
}); });
afterEach(() => { afterEach(() => {
@@ -161,5 +169,175 @@ describe('TokenTextSplitter', () => {
expect(result).toEqual(['One two', 'two three', 'three four', 'four five', 'five six']); expect(result).toEqual(['One two', 'two three', 'three four', 'four five', 'five six']);
}); });
describe('repetitive content handling', () => {
it('should use character-based estimation for repetitive content', async () => {
const splitter = new TokenTextSplitter({
chunkSize: 100,
chunkOverlap: 10,
});
const repetitiveText = 'a'.repeat(1000);
const estimatedChunks = ['chunk1', 'chunk2', 'chunk3'];
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(true);
(tokenEstimator.estimateTextSplitsByTokens as jest.Mock).mockReturnValue(estimatedChunks);
const result = await splitter.splitText(repetitiveText);
// Should not call tiktoken
expect(tiktokenUtils.getEncoding).not.toHaveBeenCalled();
expect(mockTokenizer.encode).not.toHaveBeenCalled();
// Should use estimation
expect(helpers.hasLongSequentialRepeat).toHaveBeenCalledWith(repetitiveText);
expect(tokenEstimator.estimateTextSplitsByTokens).toHaveBeenCalledWith(
repetitiveText,
100,
10,
'cl100k_base',
);
expect(result).toEqual(estimatedChunks);
});
it('should use tiktoken for non-repetitive content', async () => {
const splitter = new TokenTextSplitter({
chunkSize: 3,
chunkOverlap: 0,
});
const normalText = 'This is normal text without repetition';
const mockTokenIds = [1, 2, 3, 4, 5, 6];
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(false);
mockTokenizer.encode.mockReturnValue(mockTokenIds);
mockTokenizer.decode.mockImplementation(() => 'chunk');
await splitter.splitText(normalText);
// Should check for repetition
expect(helpers.hasLongSequentialRepeat).toHaveBeenCalledWith(normalText);
// Should use tiktoken
expect(tiktokenUtils.getEncoding).toHaveBeenCalled();
expect(mockTokenizer.encode).toHaveBeenCalled();
// Should not use estimation
expect(tokenEstimator.estimateTextSplitsByTokens).not.toHaveBeenCalled();
});
it('should handle repetitive content with different encodings', async () => {
const splitter = new TokenTextSplitter({
encodingName: 'o200k_base',
chunkSize: 50,
chunkOverlap: 5,
});
const repetitiveText = '.'.repeat(500);
const estimatedChunks = ['estimated chunk 1', 'estimated chunk 2'];
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(true);
(tokenEstimator.estimateTextSplitsByTokens as jest.Mock).mockReturnValue(estimatedChunks);
const result = await splitter.splitText(repetitiveText);
expect(tokenEstimator.estimateTextSplitsByTokens).toHaveBeenCalledWith(
repetitiveText,
50,
5,
'o200k_base',
);
expect(result).toEqual(estimatedChunks);
});
it('should handle edge case with exactly 100 repeating characters', async () => {
const splitter = new TokenTextSplitter();
const edgeText = 'x'.repeat(100);
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(true);
(tokenEstimator.estimateTextSplitsByTokens as jest.Mock).mockReturnValue(['single chunk']);
const result = await splitter.splitText(edgeText);
expect(helpers.hasLongSequentialRepeat).toHaveBeenCalledWith(edgeText);
expect(result).toEqual(['single chunk']);
});
it('should handle mixed content with repetitive sections', async () => {
const splitter = new TokenTextSplitter();
const mixedText = 'Normal text ' + 'z'.repeat(200) + ' more normal text';
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(true);
(tokenEstimator.estimateTextSplitsByTokens as jest.Mock).mockReturnValue([
'chunk1',
'chunk2',
]);
const result = await splitter.splitText(mixedText);
expect(helpers.hasLongSequentialRepeat).toHaveBeenCalledWith(mixedText);
expect(tokenEstimator.estimateTextSplitsByTokens).toHaveBeenCalled();
expect(result).toEqual(['chunk1', 'chunk2']);
});
});
describe('error handling', () => {
it('should return empty array for null input', async () => {
const splitter = new TokenTextSplitter();
const result = await splitter.splitText(null as any);
expect(result).toEqual([]);
});
it('should return empty array for undefined input', async () => {
const splitter = new TokenTextSplitter();
const result = await splitter.splitText(undefined as any);
expect(result).toEqual([]);
});
it('should return empty array for non-string input', async () => {
const splitter = new TokenTextSplitter();
const result = await splitter.splitText(123 as any);
expect(result).toEqual([]);
});
it('should fall back to estimation if tiktoken fails', async () => {
const splitter = new TokenTextSplitter();
const text = 'This will cause tiktoken to fail';
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(false);
(tiktokenUtils.getEncoding as jest.Mock).mockRejectedValue(new Error('Tiktoken error'));
(tokenEstimator.estimateTextSplitsByTokens as jest.Mock).mockReturnValue([
'fallback chunk',
]);
const result = await splitter.splitText(text);
expect(result).toEqual(['fallback chunk']);
expect(tokenEstimator.estimateTextSplitsByTokens).toHaveBeenCalledWith(
text,
splitter.chunkSize,
splitter.chunkOverlap,
splitter.encodingName,
);
});
it('should fall back to estimation if encode fails', async () => {
const splitter = new TokenTextSplitter();
const text = 'This will cause encode to fail';
(helpers.hasLongSequentialRepeat as jest.Mock).mockReturnValue(false);
mockTokenizer.encode.mockImplementation(() => {
throw new OperationalError('Encode error');
});
(tokenEstimator.estimateTextSplitsByTokens as jest.Mock).mockReturnValue([
'fallback chunk',
]);
const result = await splitter.splitText(text);
expect(result).toEqual(['fallback chunk']);
});
});
}); });
}); });

View File

@@ -258,3 +258,50 @@ export function unwrapNestedOutput(output: Record<string, unknown>): Record<stri
export function nodeNameToToolName(node: INode): string { export function nodeNameToToolName(node: INode): string {
return node.name.replace(/[\s.?!=+#@&*()[\]{}:;,<>\/\\'"^%$]/g, '_').replace(/_+/g, '_'); return node.name.replace(/[\s.?!=+#@&*()[\]{}:;,<>\/\\'"^%$]/g, '_').replace(/_+/g, '_');
} }
/**
* Detects if a text contains a character that repeats sequentially for a specified threshold.
* This is used to prevent performance issues with tiktoken on highly repetitive content.
* @param text The text to check
* @param threshold The minimum number of sequential repeats to detect (default: 1000)
* @returns true if a character repeats sequentially for at least the threshold amount
*/
export function hasLongSequentialRepeat(text: string, threshold = 1000): boolean {
try {
// Validate inputs
if (
text === null ||
typeof text !== 'string' ||
text.length === 0 ||
threshold <= 0 ||
text.length < threshold
) {
return false;
}
// Use string iterator to avoid creating array copy (memory efficient)
const iterator = text[Symbol.iterator]();
let prev = iterator.next();
if (prev.done) {
return false;
}
let count = 1;
for (const char of iterator) {
if (char === prev.value) {
count++;
if (count >= threshold) {
return true;
}
} else {
count = 1;
prev = { value: char, done: false };
}
}
return false;
} catch (error) {
// On any error, return false to allow normal processing
return false;
}
}

View File

@@ -8,6 +8,7 @@ import { z } from 'zod';
import { import {
escapeSingleCurlyBrackets, escapeSingleCurlyBrackets,
getConnectedTools, getConnectedTools,
hasLongSequentialRepeat,
nodeNameToToolName, nodeNameToToolName,
unwrapNestedOutput, unwrapNestedOutput,
} from '../helpers'; } from '../helpers';
@@ -423,3 +424,107 @@ describe('unwrapNestedOutput', () => {
expect(unwrapNestedOutput(input)).toEqual(input); expect(unwrapNestedOutput(input)).toEqual(input);
}); });
}); });
describe('hasLongSequentialRepeat', () => {
it('should return false for text shorter than threshold', () => {
const text = 'a'.repeat(99);
expect(hasLongSequentialRepeat(text, 100)).toBe(false);
});
it('should return false for normal text without repeats', () => {
const text = 'This is a normal text without many sequential repeating characters.';
expect(hasLongSequentialRepeat(text)).toBe(false);
});
it('should return true for text with exactly threshold repeats', () => {
const text = 'a'.repeat(100);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should return true for text with more than threshold repeats', () => {
const text = 'b'.repeat(150);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should detect repeats in the middle of text', () => {
const text = 'Normal text ' + 'x'.repeat(100) + ' more normal text';
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should detect repeats at the end of text', () => {
const text = 'Normal text at the beginning' + 'z'.repeat(100);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should work with different thresholds', () => {
const text = 'a'.repeat(50);
expect(hasLongSequentialRepeat(text, 30)).toBe(true);
expect(hasLongSequentialRepeat(text, 60)).toBe(false);
});
it('should handle special characters', () => {
const text = '.'.repeat(100);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should handle spaces', () => {
const text = ' '.repeat(100);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should handle newlines', () => {
const text = '\n'.repeat(100);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
it('should not detect non-sequential repeats', () => {
const text = 'ababab'.repeat(50); // 300 chars but no sequential repeats
expect(hasLongSequentialRepeat(text, 100)).toBe(false);
});
it('should handle mixed content with repeats below threshold', () => {
const text = 'aaa' + 'b'.repeat(50) + 'ccc' + 'd'.repeat(40) + 'eee';
expect(hasLongSequentialRepeat(text, 100)).toBe(false);
});
it('should handle empty string', () => {
expect(hasLongSequentialRepeat('', 100)).toBe(false);
});
it('should work with very large texts', () => {
const normalText = 'Lorem ipsum dolor sit amet '.repeat(1000);
const textWithRepeat = normalText + 'A'.repeat(100) + normalText;
expect(hasLongSequentialRepeat(textWithRepeat, 100)).toBe(true);
});
it('should detect unicode character repeats', () => {
const text = '😀'.repeat(100);
expect(hasLongSequentialRepeat(text, 100)).toBe(true);
});
describe('error handling', () => {
it('should handle null input', () => {
expect(hasLongSequentialRepeat(null as any)).toBe(false);
});
it('should handle undefined input', () => {
expect(hasLongSequentialRepeat(undefined as any)).toBe(false);
});
it('should handle non-string input', () => {
expect(hasLongSequentialRepeat(123 as any)).toBe(false);
expect(hasLongSequentialRepeat({} as any)).toBe(false);
expect(hasLongSequentialRepeat([] as any)).toBe(false);
});
it('should handle zero or negative threshold', () => {
const text = 'a'.repeat(100);
expect(hasLongSequentialRepeat(text, 0)).toBe(false);
expect(hasLongSequentialRepeat(text, -1)).toBe(false);
});
it('should handle empty string', () => {
expect(hasLongSequentialRepeat('', 100)).toBe(false);
});
});
});

View File

@@ -0,0 +1,248 @@
/* eslint-disable @typescript-eslint/no-explicit-any */
/* eslint-disable @typescript-eslint/no-unsafe-argument */
import {
estimateTokensByCharCount,
estimateTextSplitsByTokens,
estimateTokensFromStringList,
} from '../token-estimator';
describe('token-estimator', () => {
describe('estimateTokensByCharCount', () => {
it('should estimate tokens for text using default model', () => {
const text = 'This is a test text with some content.';
const result = estimateTokensByCharCount(text);
// 38 characters / 4.0 (cl100k_base ratio) = 10 tokens
expect(result).toBe(10);
});
it('should estimate tokens for different models', () => {
const text = 'Test text'; // 9 characters
expect(estimateTokensByCharCount(text, 'gpt-4o')).toBe(3); // 9 / 3.8 = 2.37 -> 3
expect(estimateTokensByCharCount(text, 'gpt-4')).toBe(3); // 9 / 4.0 = 2.25 -> 3
expect(estimateTokensByCharCount(text, 'o200k_base')).toBe(3); // 9 / 3.5 = 2.57 -> 3
expect(estimateTokensByCharCount(text, 'p50k_base')).toBe(3); // 9 / 4.2 = 2.14 -> 3
});
it('should use default ratio for unknown models', () => {
const text = 'Test text with 24 chars.'; // 24 characters
const result = estimateTokensByCharCount(text, 'unknown-model');
expect(result).toBe(6); // 24 / 4.0 = 6
});
it('should handle empty text', () => {
expect(estimateTokensByCharCount('')).toBe(0);
expect(estimateTokensByCharCount('', 'gpt-4')).toBe(0);
});
it('should handle null or undefined text', () => {
expect(estimateTokensByCharCount(null as any)).toBe(0);
expect(estimateTokensByCharCount(undefined as any)).toBe(0);
});
it('should handle non-string input', () => {
expect(estimateTokensByCharCount(123 as any)).toBe(0);
expect(estimateTokensByCharCount({} as any)).toBe(0);
expect(estimateTokensByCharCount([] as any)).toBe(0);
});
it('should handle very long text', () => {
const longText = 'a'.repeat(10000);
const result = estimateTokensByCharCount(longText);
expect(result).toBe(2500); // 10000 / 4.0 = 2500
});
it('should handle invalid model ratios gracefully', () => {
// This would only happen if MODEL_CHAR_PER_TOKEN_RATIOS is corrupted
const text = 'Test text'; // 9 characters
// Since we can't mock the constant, we test with default fallback
const result = estimateTokensByCharCount(text, 'corrupted-model');
expect(result).toBe(3); // Falls back to 4.0 ratio
});
it('should round up token estimates', () => {
expect(estimateTokensByCharCount('a')).toBe(1); // 1 / 4.0 = 0.25 -> 1
expect(estimateTokensByCharCount('ab')).toBe(1); // 2 / 4.0 = 0.5 -> 1
expect(estimateTokensByCharCount('abc')).toBe(1); // 3 / 4.0 = 0.75 -> 1
expect(estimateTokensByCharCount('abcd')).toBe(1); // 4 / 4.0 = 1
expect(estimateTokensByCharCount('abcde')).toBe(2); // 5 / 4.0 = 1.25 -> 2
});
});
describe('estimateTextSplitsByTokens', () => {
it('should split text into chunks based on estimated token size', () => {
const text = 'a'.repeat(400); // 400 characters
const chunks = estimateTextSplitsByTokens(text, 25, 0); // 25 tokens = 100 chars
expect(chunks).toHaveLength(4);
expect(chunks[0]).toHaveLength(100);
expect(chunks[1]).toHaveLength(100);
expect(chunks[2]).toHaveLength(100);
expect(chunks[3]).toHaveLength(100);
});
it('should handle chunk overlap', () => {
const text = 'a'.repeat(200); // 200 characters
const chunks = estimateTextSplitsByTokens(text, 25, 5); // 25 tokens = 100 chars, 5 tokens = 20 chars overlap
expect(chunks).toHaveLength(3);
expect(chunks[0]).toBe('a'.repeat(100)); // First chunk: 0-100
expect(chunks[1]).toBe('a'.repeat(100)); // Second chunk: 80-180 (20 char overlap)
expect(chunks[2]).toBe('a'.repeat(40)); // Third chunk: 160-200
});
it('should handle text shorter than chunk size', () => {
const text = 'Short text';
const chunks = estimateTextSplitsByTokens(text, 100, 0);
expect(chunks).toHaveLength(1);
expect(chunks[0]).toBe(text);
});
it('should handle empty text', () => {
expect(estimateTextSplitsByTokens('', 10, 0)).toEqual([]);
});
it('should handle null or undefined text', () => {
expect(estimateTextSplitsByTokens(null as any, 10, 0)).toEqual([]);
expect(estimateTextSplitsByTokens(undefined as any, 10, 0)).toEqual([]);
});
it('should handle non-string input', () => {
expect(estimateTextSplitsByTokens(123 as any, 10, 0)).toEqual([]);
expect(estimateTextSplitsByTokens({} as any, 10, 0)).toEqual([]);
});
it('should handle invalid chunk size', () => {
const text = 'Test text';
expect(estimateTextSplitsByTokens(text, 0, 0)).toEqual([text]);
expect(estimateTextSplitsByTokens(text, -1, 0)).toEqual([text]);
expect(estimateTextSplitsByTokens(text, NaN, 0)).toEqual([text]);
expect(estimateTextSplitsByTokens(text, Infinity, 0)).toEqual([text]);
});
it('should handle invalid overlap', () => {
const text = 'a'.repeat(200);
// Negative overlap should be treated as 0
const chunks1 = estimateTextSplitsByTokens(text, 25, -10);
expect(chunks1).toHaveLength(2);
// Overlap larger than chunk size should be capped
const chunks2 = estimateTextSplitsByTokens(text, 25, 30); // overlap capped to 24
expect(chunks2.length).toBeGreaterThan(2);
});
it('should ensure progress even with large overlap', () => {
const text = 'a'.repeat(100);
// With overlap = chunkSize - 1, we should still make progress
const chunks = estimateTextSplitsByTokens(text, 10, 9); // 10 tokens = 40 chars, 9 tokens = 36 chars overlap
expect(chunks.length).toBeGreaterThan(1);
// Verify no infinite loop occurs
expect(chunks.length).toBeLessThan(100);
});
it('should work with different models', () => {
const text = 'a'.repeat(380); // 380 characters
const chunks = estimateTextSplitsByTokens(text, 100, 0, 'gpt-4o'); // 100 tokens * 3.8 = 380 chars
expect(chunks).toHaveLength(1);
expect(chunks[0]).toBe(text);
});
it('should use default model ratio for unknown models', () => {
const text = 'a'.repeat(400);
const chunks = estimateTextSplitsByTokens(text, 100, 0, 'unknown-model'); // Falls back to 4.0 ratio
expect(chunks).toHaveLength(1);
expect(chunks[0]).toBe(text);
});
it('should handle edge case where text length equals chunk size', () => {
const text = 'a'.repeat(100);
const chunks = estimateTextSplitsByTokens(text, 25, 0); // 25 tokens = 100 chars
expect(chunks).toHaveLength(1);
expect(chunks[0]).toBe(text);
});
it('should handle unicode text', () => {
const text = '你好世界'.repeat(25); // 100 characters (4 chars * 25)
const chunks = estimateTextSplitsByTokens(text, 25, 0);
expect(chunks.length).toBeGreaterThan(0);
expect(chunks.join('')).toBe(text);
});
it('should return single chunk on any error in catch block', () => {
const text = 'Test text';
// Since we can't easily trigger the catch block, we test the expected behavior
// The function should return [text] on error
const result = estimateTextSplitsByTokens(text, 10, 0);
expect(result.length).toBeGreaterThan(0);
});
});
describe('estimateTokensFromStringList', () => {
// Since this function uses tiktoken which requires external data files,
// we'll test it with integration-style tests that don't require mocking
it('should handle empty list', async () => {
const result = await estimateTokensFromStringList([], 'gpt-4');
expect(result).toBe(0);
});
it('should handle non-array input', async () => {
const result = await estimateTokensFromStringList(null as any, 'gpt-4');
expect(result).toBe(0);
const result2 = await estimateTokensFromStringList('not an array' as any, 'gpt-4');
expect(result2).toBe(0);
});
it('should handle null/undefined items in list', async () => {
const list = ['Valid text', null, undefined, '', 123 as any];
const result = await estimateTokensFromStringList(list, 'gpt-4');
expect(result).toEqual(2);
});
it('should estimate tokens for normal text', async () => {
const list = ['Hello world', 'Test text'];
const result = await estimateTokensFromStringList(list, 'gpt-4');
expect(result).toBeGreaterThan(0);
});
it('should use character-based estimation for repetitive content', async () => {
const list = ['a'.repeat(1500)];
const result = await estimateTokensFromStringList(list, 'gpt-4');
expect(result).toBe(375); // 1500 chars / 4.0 = 375 tokens
});
it('should handle mixed content', async () => {
const list = ['Normal text content', 'a'.repeat(1500), 'More normal text'];
const result = await estimateTokensFromStringList(list, 'gpt-4');
expect(result).toBeGreaterThan(375); // At least the repetitive content tokens
});
it('should work with different models', async () => {
const list = ['Test text for different model'];
const result1 = await estimateTokensFromStringList(list, 'gpt-4');
const result2 = await estimateTokensFromStringList(list, 'gpt-4o');
// Both should return positive values
expect(result1).toBeGreaterThan(0);
expect(result2).toBeGreaterThan(0);
});
it('should handle very long lists', async () => {
const list = Array(10000).fill('Sample text');
const result = await estimateTokensFromStringList(list, 'gpt-4');
expect(result).toBeGreaterThan(0);
});
it('should handle unicode text', async () => {
const list = ['你好世界', '🌍🌎🌏', 'مرحبا بالعالم'];
const result = await estimateTokensFromStringList(list, 'gpt-4');
expect(result).toBeGreaterThan(0);
});
});
});

View File

@@ -0,0 +1,176 @@
/**
* Token estimation utilities for handling text without using tiktoken.
* This is used as a fallback when tiktoken would be too slow (e.g., with repetitive content).
*/
import type { TiktokenModel } from 'js-tiktoken';
import { encodingForModel } from './tiktoken';
import { hasLongSequentialRepeat } from '../helpers';
/**
* Model-specific average characters per token ratios.
* These are approximate values based on typical English text.
*/
const MODEL_CHAR_PER_TOKEN_RATIOS: Record<string, number> = {
'gpt-4o': 3.8,
'gpt-4': 4.0,
'gpt-3.5-turbo': 4.0,
cl100k_base: 4.0,
o200k_base: 3.5,
p50k_base: 4.2,
r50k_base: 4.2,
};
/**
* Estimates the number of tokens in a text based on character count.
* This is much faster than tiktoken but less accurate.
*
* @param text The text to estimate tokens for
* @param model The model or encoding name (optional)
* @returns Estimated number of tokens
*/
export function estimateTokensByCharCount(text: string, model: string = 'cl100k_base'): number {
try {
// Validate input
if (!text || typeof text !== 'string' || text.length === 0) {
return 0;
}
// Get the ratio for the specific model, or use default
const charsPerToken = MODEL_CHAR_PER_TOKEN_RATIOS[model] || 4.0;
// Validate ratio
if (!Number.isFinite(charsPerToken) || charsPerToken <= 0) {
// Fallback to default ratio
const estimatedTokens = Math.ceil(text.length / 4.0);
return estimatedTokens;
}
// Calculate estimated tokens
const estimatedTokens = Math.ceil(text.length / charsPerToken);
return estimatedTokens;
} catch (error) {
// Return conservative estimate on error
return Math.ceil((text?.length || 0) / 4.0);
}
}
/**
* Estimates tokens for text splitting purposes.
* Returns chunk boundaries based on character positions rather than token positions.
*
* @param text The text to split
* @param chunkSize Target chunk size in tokens
* @param chunkOverlap Overlap between chunks in tokens
* @param model The model or encoding name (optional)
* @returns Array of text chunks
*/
export function estimateTextSplitsByTokens(
text: string,
chunkSize: number,
chunkOverlap: number,
model: string = 'cl100k_base',
): string[] {
try {
// Validate inputs
if (!text || typeof text !== 'string' || text.length === 0) {
return [];
}
// Validate numeric parameters
if (!Number.isFinite(chunkSize) || chunkSize <= 0) {
// Return whole text as single chunk if invalid chunk size
return [text];
}
// Ensure overlap is valid and less than chunk size
const validOverlap =
Number.isFinite(chunkOverlap) && chunkOverlap >= 0
? Math.min(chunkOverlap, chunkSize - 1)
: 0;
const charsPerToken = MODEL_CHAR_PER_TOKEN_RATIOS[model] || 4.0;
const chunkSizeInChars = Math.floor(chunkSize * charsPerToken);
const overlapInChars = Math.floor(validOverlap * charsPerToken);
const chunks: string[] = [];
let start = 0;
while (start < text.length) {
const end = Math.min(start + chunkSizeInChars, text.length);
chunks.push(text.slice(start, end));
if (end >= text.length) {
break;
}
// Move to next chunk with overlap
start = Math.max(end - overlapInChars, start + 1);
}
return chunks;
} catch (error) {
// Return text as single chunk on error
return text ? [text] : [];
}
}
/**
* Estimates the total number of tokens for a list of strings.
* Uses tiktoken for normal text but falls back to character-based estimation
* for repetitive content or on errors.
*
* @param list Array of strings to estimate tokens for
* @param model The model or encoding name to use for estimation
* @returns Total estimated number of tokens across all strings
*/
export async function estimateTokensFromStringList(
list: string[],
model: TiktokenModel,
): Promise<number> {
try {
// Validate input
if (!Array.isArray(list)) {
return 0;
}
const encoder = await encodingForModel(model);
const encodedListLength = await Promise.all(
list.map(async (text) => {
try {
// Handle null/undefined text
if (!text || typeof text !== 'string') {
return 0;
}
// Check for repetitive content
if (hasLongSequentialRepeat(text)) {
const estimatedTokens = estimateTokensByCharCount(text, model);
return estimatedTokens;
}
// Use tiktoken for normal text
try {
const tokens = encoder.encode(text);
return tokens.length;
} catch (encodingError) {
// Fall back to estimation if tiktoken fails
return estimateTokensByCharCount(text, model);
}
} catch (itemError) {
// Return 0 for individual item errors
return 0;
}
}),
);
const totalTokens = encodedListLength.reduce((acc, curr) => acc + curr, 0);
return totalTokens;
} catch (error) {
// Return 0 on complete failure
return 0;
}
}