/* eslint-disable n8n-nodes-base/node-dirname-against-convention */ import { ProjectsClient } from '@google-cloud/resource-manager'; import { VertexAIEmbeddings } from '@langchain/google-vertexai'; import { formatPrivateKey } from 'n8n-nodes-base/dist/utils/utilities'; import { NodeConnectionTypes } from 'n8n-workflow'; import type { ILoadOptionsFunctions, INodeType, INodeTypeDescription, ISupplyDataFunctions, SupplyData, } from 'n8n-workflow'; import { logWrapper } from '@utils/logWrapper'; import { getConnectionHintNoticeField } from '@utils/sharedFields'; export class EmbeddingsGoogleVertex implements INodeType { methods = { listSearch: { async gcpProjectsList(this: ILoadOptionsFunctions) { const results: Array<{ name: string; value: string }> = []; const credentials = await this.getCredentials('googleApi'); const privateKey = formatPrivateKey(credentials.privateKey as string); const email = (credentials.email as string).trim(); const client = new ProjectsClient({ credentials: { client_email: email, private_key: privateKey, }, }); const [projects] = await client.searchProjects(); for (const project of projects) { if (project.projectId) { results.push({ name: project.displayName ?? project.projectId, value: project.projectId, }); } } return { results }; }, }, }; description: INodeTypeDescription = { displayName: 'Embeddings Google Vertex', name: 'embeddingsGoogleVertex', icon: 'file:google.svg', group: ['transform'], version: 1, description: 'Use Google Vertex Embeddings', defaults: { name: 'Embeddings Google Vertex', }, requestDefaults: { ignoreHttpStatusErrors: true, baseURL: '={{ $credentials.host }}', }, credentials: [ { name: 'googleApi', required: true, }, ], codex: { categories: ['AI'], subcategories: { AI: ['Embeddings'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsgooglevertex/', }, ], }, }, // eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node inputs: [], // eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong outputs: [NodeConnectionTypes.AiEmbedding], outputNames: ['Embeddings'], properties: [ getConnectionHintNoticeField([NodeConnectionTypes.AiVectorStore]), { displayName: 'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings. You can find available models here.', name: 'notice', type: 'notice', default: '', }, { displayName: 'Project ID', name: 'projectId', type: 'resourceLocator', default: { mode: 'list', value: '' }, required: true, description: 'Select or enter your Google Cloud project ID', modes: [ { displayName: 'From List', name: 'list', type: 'list', typeOptions: { searchListMethod: 'gcpProjectsList', }, }, { displayName: 'ID', name: 'id', type: 'string', }, ], }, { displayName: 'Model Name', name: 'modelName', type: 'string', description: 'The model which will generate the embeddings. Learn more.', default: 'text-embedding-005', }, ], }; async supplyData(this: ISupplyDataFunctions, itemIndex: number): Promise { const credentials = await this.getCredentials('googleApi'); const privateKey = formatPrivateKey(credentials.privateKey as string); const email = (credentials.email as string).trim(); const region = credentials.region as string; const modelName = this.getNodeParameter('modelName', itemIndex) as string; const projectId = this.getNodeParameter('projectId', itemIndex, '', { extractValue: true, }) as string; const embeddings = new VertexAIEmbeddings({ authOptions: { projectId, credentials: { client_email: email, private_key: privateKey, }, }, location: region, model: modelName, }); return { response: logWrapper(embeddings, this), }; } }