import type { BaseLanguageModel } from '@langchain/core/language_models/base'; import { ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, PromptTemplate, } from '@langchain/core/prompts'; import type { BaseRetriever } from '@langchain/core/retrievers'; import { createStuffDocumentsChain } from 'langchain/chains/combine_documents'; import { createRetrievalChain } from 'langchain/chains/retrieval'; import { NodeConnectionTypes, NodeOperationError, parseErrorMetadata, sleep } from 'n8n-workflow'; import { type INodeProperties, type IExecuteFunctions, type INodeExecutionData, type INodeType, type INodeTypeDescription, } from 'n8n-workflow'; import { promptTypeOptions, textFromPreviousNode } from '@utils/descriptions'; import { getPromptInputByType, isChatInstance } from '@utils/helpers'; import { getTemplateNoticeField } from '@utils/sharedFields'; import { getTracingConfig } from '@utils/tracing'; const SYSTEM_PROMPT_TEMPLATE = `You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know, don't try to make up an answer. ---------------- Context: {context}`; // Due to the refactoring in version 1.5, the variable name {question} needed to be changed to {input} in the prompt template. const LEGACY_INPUT_TEMPLATE_KEY = 'question'; const INPUT_TEMPLATE_KEY = 'input'; const systemPromptOption: INodeProperties = { displayName: 'System Prompt Template', name: 'systemPromptTemplate', type: 'string', default: SYSTEM_PROMPT_TEMPLATE, typeOptions: { rows: 6, }, }; export class ChainRetrievalQa implements INodeType { description: INodeTypeDescription = { displayName: 'Question and Answer Chain', name: 'chainRetrievalQa', icon: 'fa:link', iconColor: 'black', group: ['transform'], version: [1, 1.1, 1.2, 1.3, 1.4, 1.5], description: 'Answer questions about retrieved documents', defaults: { name: 'Question and Answer Chain', color: '#909298', }, codex: { alias: ['LangChain'], categories: ['AI'], subcategories: { AI: ['Chains', 'Root Nodes'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/', }, ], }, }, // eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node inputs: [ NodeConnectionTypes.Main, { displayName: 'Model', maxConnections: 1, type: NodeConnectionTypes.AiLanguageModel, required: true, }, { displayName: 'Retriever', maxConnections: 1, type: NodeConnectionTypes.AiRetriever, required: true, }, ], outputs: [NodeConnectionTypes.Main], credentials: [], properties: [ getTemplateNoticeField(1960), { displayName: 'Query', name: 'query', type: 'string', required: true, default: '={{ $json.input }}', displayOptions: { show: { '@version': [1], }, }, }, { displayName: 'Query', name: 'query', type: 'string', required: true, default: '={{ $json.chat_input }}', displayOptions: { show: { '@version': [1.1], }, }, }, { displayName: 'Query', name: 'query', type: 'string', required: true, default: '={{ $json.chatInput }}', displayOptions: { show: { '@version': [1.2], }, }, }, { ...promptTypeOptions, displayOptions: { hide: { '@version': [{ _cnd: { lte: 1.2 } }], }, }, }, { ...textFromPreviousNode, displayOptions: { show: { promptType: ['auto'], '@version': [{ _cnd: { gte: 1.4 } }] } }, }, { displayName: 'Prompt (User Message)', name: 'text', type: 'string', required: true, default: '', placeholder: 'e.g. Hello, how can you help me?', typeOptions: { rows: 2, }, displayOptions: { show: { promptType: ['define'], }, }, }, { displayName: 'Options', name: 'options', type: 'collection', default: {}, placeholder: 'Add Option', options: [ { ...systemPromptOption, description: `Template string used for the system prompt. This should include the variable \`{context}\` for the provided context. For text completion models, you should also include the variable \`{${LEGACY_INPUT_TEMPLATE_KEY}}\` for the user’s query.`, displayOptions: { show: { '@version': [{ _cnd: { lt: 1.5 } }], }, }, }, { ...systemPromptOption, description: `Template string used for the system prompt. This should include the variable \`{context}\` for the provided context. For text completion models, you should also include the variable \`{${INPUT_TEMPLATE_KEY}}\` for the user’s query.`, displayOptions: { show: { '@version': [{ _cnd: { gte: 1.5 } }], }, }, }, { displayName: 'Batch Processing', name: 'batching', type: 'collection', description: 'Batch processing options for rate limiting', default: {}, options: [ { displayName: 'Batch Size', name: 'batchSize', default: 100, type: 'number', description: 'How many items to process in parallel. This is useful for rate limiting.', }, { displayName: 'Delay Between Batches', name: 'delayBetweenBatches', default: 0, type: 'number', description: 'Delay in milliseconds between batches. This is useful for rate limiting.', }, ], }, ], }, ], }; async execute(this: IExecuteFunctions): Promise { this.logger.debug('Executing Retrieval QA Chain'); const items = this.getInputData(); const { batchSize, delayBetweenBatches } = this.getNodeParameter('options.batching', 0, { batchSize: 100, delayBetweenBatches: 0, }) as { batchSize: number; delayBetweenBatches: number; }; const returnData: INodeExecutionData[] = []; for (let i = 0; i < items.length; i += batchSize) { const batch = items.slice(i, i + batchSize); const batchPromises = batch.map(async (_item, batchIndex) => { const itemIndex = i + batchIndex; const model = (await this.getInputConnectionData( NodeConnectionTypes.AiLanguageModel, 0, )) as BaseLanguageModel; const retriever = (await this.getInputConnectionData( NodeConnectionTypes.AiRetriever, 0, )) as BaseRetriever; let query; if (this.getNode().typeVersion <= 1.2) { query = this.getNodeParameter('query', itemIndex) as string; } else { query = getPromptInputByType({ ctx: this, i: itemIndex, inputKey: 'text', promptTypeKey: 'promptType', }); } if (query === undefined) { throw new NodeOperationError(this.getNode(), 'The ‘query‘ parameter is empty.'); } const options = this.getNodeParameter('options', itemIndex, {}) as { systemPromptTemplate?: string; }; let templateText = options.systemPromptTemplate ?? SYSTEM_PROMPT_TEMPLATE; // Replace legacy input template key for versions 1.4 and below if (this.getNode().typeVersion < 1.5) { templateText = templateText.replace( `{${LEGACY_INPUT_TEMPLATE_KEY}}`, `{${INPUT_TEMPLATE_KEY}}`, ); } // Create prompt template based on model type and user configuration let promptTemplate; if (isChatInstance(model)) { // For chat models, create a chat prompt template with system and human messages const messages = [ SystemMessagePromptTemplate.fromTemplate(templateText), HumanMessagePromptTemplate.fromTemplate('{input}'), ]; promptTemplate = ChatPromptTemplate.fromMessages(messages); } else { // For non-chat models, create a text prompt template with Question/Answer format const questionSuffix = options.systemPromptTemplate === undefined ? '\n\nQuestion: {input}\nAnswer:' : ''; promptTemplate = new PromptTemplate({ template: templateText + questionSuffix, inputVariables: ['context', 'input'], }); } // Create the document chain that combines the retrieved documents const combineDocsChain = await createStuffDocumentsChain({ llm: model, prompt: promptTemplate, }); // Create the retrieval chain that handles the retrieval and then passes to the combine docs chain const retrievalChain = await createRetrievalChain({ combineDocsChain, retriever, }); // Execute the chain with tracing config const tracingConfig = getTracingConfig(this); const result = await retrievalChain .withConfig(tracingConfig) .invoke({ input: query }, { signal: this.getExecutionCancelSignal() }); return result; }); const batchResults = await Promise.allSettled(batchPromises); batchResults.forEach((response, index) => { if (response.status === 'rejected') { const error = response.reason; if (this.continueOnFail()) { const metadata = parseErrorMetadata(error); returnData.push({ json: { error: error.message }, pairedItem: { item: index }, metadata, }); return; } else { throw error; } } const output = response.value; const answer: string = output.answer; if (this.getNode().typeVersion >= 1.5) { returnData.push({ json: { response: answer } }); } else { // Legacy format for versions 1.4 and below is { text: string } returnData.push({ json: { response: { text: answer } } }); } }); // Add delay between batches if not the last batch if (i + batchSize < items.length && delayBetweenBatches > 0) { await sleep(delayBetweenBatches); } } return [returnData]; } }