Files
n8n-enterprise-unlocked/packages/@n8n/nodes-langchain/utils/tokenizer/token-estimator.ts

177 lines
4.7 KiB
TypeScript

/**
* Token estimation utilities for handling text without using tiktoken.
* This is used as a fallback when tiktoken would be too slow (e.g., with repetitive content).
*/
import type { TiktokenModel } from 'js-tiktoken';
import { encodingForModel } from './tiktoken';
import { hasLongSequentialRepeat } from '../helpers';
/**
* Model-specific average characters per token ratios.
* These are approximate values based on typical English text.
*/
const MODEL_CHAR_PER_TOKEN_RATIOS: Record<string, number> = {
'gpt-4o': 3.8,
'gpt-4': 4.0,
'gpt-3.5-turbo': 4.0,
cl100k_base: 4.0,
o200k_base: 3.5,
p50k_base: 4.2,
r50k_base: 4.2,
};
/**
* Estimates the number of tokens in a text based on character count.
* This is much faster than tiktoken but less accurate.
*
* @param text The text to estimate tokens for
* @param model The model or encoding name (optional)
* @returns Estimated number of tokens
*/
export function estimateTokensByCharCount(text: string, model: string = 'cl100k_base'): number {
try {
// Validate input
if (!text || typeof text !== 'string' || text.length === 0) {
return 0;
}
// Get the ratio for the specific model, or use default
const charsPerToken = MODEL_CHAR_PER_TOKEN_RATIOS[model] || 4.0;
// Validate ratio
if (!Number.isFinite(charsPerToken) || charsPerToken <= 0) {
// Fallback to default ratio
const estimatedTokens = Math.ceil(text.length / 4.0);
return estimatedTokens;
}
// Calculate estimated tokens
const estimatedTokens = Math.ceil(text.length / charsPerToken);
return estimatedTokens;
} catch (error) {
// Return conservative estimate on error
return Math.ceil((text?.length || 0) / 4.0);
}
}
/**
* Estimates tokens for text splitting purposes.
* Returns chunk boundaries based on character positions rather than token positions.
*
* @param text The text to split
* @param chunkSize Target chunk size in tokens
* @param chunkOverlap Overlap between chunks in tokens
* @param model The model or encoding name (optional)
* @returns Array of text chunks
*/
export function estimateTextSplitsByTokens(
text: string,
chunkSize: number,
chunkOverlap: number,
model: string = 'cl100k_base',
): string[] {
try {
// Validate inputs
if (!text || typeof text !== 'string' || text.length === 0) {
return [];
}
// Validate numeric parameters
if (!Number.isFinite(chunkSize) || chunkSize <= 0) {
// Return whole text as single chunk if invalid chunk size
return [text];
}
// Ensure overlap is valid and less than chunk size
const validOverlap =
Number.isFinite(chunkOverlap) && chunkOverlap >= 0
? Math.min(chunkOverlap, chunkSize - 1)
: 0;
const charsPerToken = MODEL_CHAR_PER_TOKEN_RATIOS[model] || 4.0;
const chunkSizeInChars = Math.floor(chunkSize * charsPerToken);
const overlapInChars = Math.floor(validOverlap * charsPerToken);
const chunks: string[] = [];
let start = 0;
while (start < text.length) {
const end = Math.min(start + chunkSizeInChars, text.length);
chunks.push(text.slice(start, end));
if (end >= text.length) {
break;
}
// Move to next chunk with overlap
start = Math.max(end - overlapInChars, start + 1);
}
return chunks;
} catch (error) {
// Return text as single chunk on error
return text ? [text] : [];
}
}
/**
* Estimates the total number of tokens for a list of strings.
* Uses tiktoken for normal text but falls back to character-based estimation
* for repetitive content or on errors.
*
* @param list Array of strings to estimate tokens for
* @param model The model or encoding name to use for estimation
* @returns Total estimated number of tokens across all strings
*/
export async function estimateTokensFromStringList(
list: string[],
model: TiktokenModel,
): Promise<number> {
try {
// Validate input
if (!Array.isArray(list)) {
return 0;
}
const encoder = encodingForModel(model);
const encodedListLength = await Promise.all(
list.map(async (text) => {
try {
// Handle null/undefined text
if (!text || typeof text !== 'string') {
return 0;
}
// Check for repetitive content
if (hasLongSequentialRepeat(text)) {
const estimatedTokens = estimateTokensByCharCount(text, model);
return estimatedTokens;
}
// Use tiktoken for normal text
try {
const tokens = encoder.encode(text);
return tokens.length;
} catch (encodingError) {
// Fall back to estimation if tiktoken fails
return estimateTokensByCharCount(text, model);
}
} catch (itemError) {
// Return 0 for individual item errors
return 0;
}
}),
);
const totalTokens = encodedListLength.reduce((acc, curr) => acc + curr, 0);
return totalTokens;
} catch (error) {
// Return 0 on complete failure
return 0;
}
}