Files
n8n-enterprise-unlocked/packages/cli/src/commands/ttwf/generate.ts
oleg 632b38119b feat: AI Workflow Builder agent (no-changelog) (#17423)
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2025-07-21 11:18:26 +02:00

218 lines
6.7 KiB
TypeScript

import { Command } from '@n8n/decorators';
import { z } from 'zod';
import { BaseCommand } from '../base-command';
// interface WorkflowGenerationDatasetItem {
// prompt: string;
// referenceWorkflow: string;
// }
// We'll use this later for evals
// async function _waitForWorkflowGenerated(aiResponse: AsyncGenerator<{ messages: any[] }>) {
// let workflowJson: string | undefined;
// for await (const chunk of aiResponse) {
// const wfGeneratedMessage = chunk.messages.find(
// (m): m is WorkflowGeneratedMessage =>
// 'type' in m && (m as { type?: string }).type === 'workflow-generated',
// );
// if (wfGeneratedMessage?.codeSnippet) {
// workflowJson = wfGeneratedMessage.codeSnippet;
// }
// }
// if (!workflowJson) {
// // FIXME: Use proper error class
// throw new UserError('No workflow generated message found in AI response');
// }
// return workflowJson;
// }
const flagsSchema = z.object({
prompt: z
.string()
.alias('p')
.describe('Prompt to generate a workflow from. Mutually exclusive with --input.')
.optional(),
input: z
.string()
.alias('i')
.describe('Input dataset file name. Mutually exclusive with --prompt.')
.optional(),
output: z
.string()
.alias('o')
.describe('Output file name to save the results. Default is ttwf-results.jsonl')
.default('ttwf-results.jsonl'),
limit: z
.number()
.int()
.alias('l')
.describe('Number of items from the dataset to process. Only valid with --input.')
.default(-1),
concurrency: z
.number()
.int()
.alias('c')
.describe('Number of items to process in parallel. Only valid with --input.')
.default(1),
});
@Command({
name: 'ttwf:generate',
description: 'Create a workflow(s) using AI Text-to-Workflow builder',
examples: [
'$ n8n ttwf:generate --prompt "Create a telegram chatbot that can tell current weather in Berlin" --output result.json',
'$ n8n ttwf:generate --input dataset.jsonl --output results.jsonl',
],
flagsSchema,
})
export class TTWFGenerateCommand extends BaseCommand<z.infer<typeof flagsSchema>> {
/**
* Reads the dataset file in JSONL format
*/
// We'll use this later for evals
// private async readDataset(filePath: string): Promise<WorkflowGenerationDatasetItem[]> {
// try {
// const data = await fs.promises.readFile(filePath, { encoding: 'utf-8' });
// const lines = data.split('\n').filter((line) => line.trim() !== '');
// if (lines.length === 0) {
// throw new UserError('Dataset file is empty or contains no valid lines');
// }
// return lines.map((line, index) => {
// try {
// return jsonParse<WorkflowGenerationDatasetItem>(line);
// } catch (error) {
// throw new UserError(`Invalid JSON line on index: ${index}`);
// }
// });
// } catch (error) {
// throw new UserError(`Failed to read dataset file: ${error}`);
// }
// }
async run() {
this.logger.error(
'This command is displayed until all ai-workflow builder related PR are merged',
);
// const { flags } = this;
// if (!flags.input && !flags.prompt) {
// throw new UserError('Either --input or --prompt must be provided.');
// }
// if (flags.input && flags.prompt) {
// throw new UserError('You cannot use --input and --prompt together. Use one or the other.');
// }
// const nodeTypes = Container.get(NodeTypes);
// const wfBuilder = new AiWorkflowBuilderService(nodeTypes);
// if (flags.prompt) {
// // Single prompt mode
// if (flags.output && fs.existsSync(flags.output)) {
// if (fs.lstatSync(flags.output).isDirectory()) {
// this.logger.info('The parameter --output must be a writeable file');
// return;
// }
// this.logger.warn('The output file already exists. It will be overwritten.');
// fs.unlinkSync(flags.output);
// }
// try {
// this.logger.info(`Processing prompt: ${flags.prompt}`);
// const aiResponse = wfBuilder.chat({ question: flags.prompt });
// const generatedWorkflow = await waitForWorkflowGenerated(aiResponse);
// this.logger.info(`Generated workflow for prompt: ${flags.prompt}`);
// if (flags.output) {
// fs.writeFileSync(flags.output, generatedWorkflow);
// this.logger.info(`Workflow saved to ${flags.output}`);
// } else {
// this.logger.info('Generated Workflow:');
// // Pretty print JSON
// this.logger.info(JSON.stringify(JSON.parse(generatedWorkflow), null, 2));
// }
// } catch (e) {
// const errorMessage = e instanceof Error ? e.message : 'An error occurred';
// this.logger.error(`Error processing prompt "${flags.prompt}": ${errorMessage}`);
// }
// } else if (flags.input) {
// // Batch mode
// const output = flags.output ?? 'ttwf-results.jsonl';
// if (fs.existsSync(output)) {
// if (fs.lstatSync(output).isDirectory()) {
// this.logger.info('The parameter --output must be a writeable file');
// return;
// }
// this.logger.warn('The output file already exists. It will be overwritten.');
// fs.unlinkSync(output);
// }
// const pool = new WorkerPool<string>(flags.concurrency ?? 1);
// const dataset = await this.readDataset(flags.input);
// // Open file for writing results
// const outputStream = fs.createWriteStream(output, { flags: 'a' });
// const datasetWithLimit = (flags.limit ?? -1) > 0 ? dataset.slice(0, flags.limit) : dataset;
// await Promise.allSettled(
// datasetWithLimit.map(async (item) => {
// try {
// const generatedWorkflow = await pool.execute(async () => {
// this.logger.info(`Processing prompt: ${item.prompt}`);
// const aiResponse = wfBuilder.chat({ question: item.prompt });
// return await waitForWorkflowGenerated(aiResponse);
// });
// this.logger.info(`Generated workflow for prompt: ${item.prompt}`);
// // Write the generated workflow to the output file
// outputStream.write(
// JSON.stringify({
// prompt: item.prompt,
// generatedWorkflow,
// referenceWorkflow: item.referenceWorkflow,
// }) + '\n',
// );
// } catch (e) {
// const errorMessage = e instanceof Error ? e.message : 'An error occurred';
// this.logger.error(`Error processing prompt "${item.prompt}": ${errorMessage}`);
// // Optionally write the error to the output file
// outputStream.write(
// JSON.stringify({
// prompt: item.prompt,
// referenceWorkflow: item.referenceWorkflow,
// errorMessage,
// }) + '\n',
// );
// }
// }),
// );
// outputStream.end();
// }
}
async catch(error: Error) {
this.logger.error('\nGOT ERROR');
this.logger.error('====================================');
this.logger.error(error.message);
this.logger.error(error.stack!);
}
}