mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 09:36:44 +00:00
888 lines
31 KiB
TypeScript
888 lines
31 KiB
TypeScript
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
|
import { mock } from 'jest-mock-extended';
|
|
import { AgentExecutor } from 'langchain/agents';
|
|
import type { Tool } from 'langchain/tools';
|
|
import type { ISupplyDataFunctions, IExecuteFunctions, INode } from 'n8n-workflow';
|
|
|
|
import * as helpers from '../../../../../utils/helpers';
|
|
import * as outputParserModule from '../../../../../utils/output_parsers/N8nOutputParser';
|
|
import * as commonModule from '../../agents/ToolsAgent/common';
|
|
import { toolsAgentExecute } from '../../agents/ToolsAgent/V2/execute';
|
|
|
|
jest.mock('../../../../../utils/output_parsers/N8nOutputParser', () => ({
|
|
getOptionalOutputParser: jest.fn(),
|
|
N8nStructuredOutputParser: jest.fn(),
|
|
}));
|
|
|
|
jest.mock('../../agents/ToolsAgent/common', () => ({
|
|
...jest.requireActual('../../agents/ToolsAgent/common'),
|
|
getOptionalMemory: jest.fn(),
|
|
}));
|
|
|
|
const mockHelpers = mock<IExecuteFunctions['helpers']>();
|
|
const mockContext = mock<IExecuteFunctions>({ helpers: mockHelpers });
|
|
|
|
beforeEach(() => {
|
|
jest.clearAllMocks();
|
|
jest.resetAllMocks();
|
|
});
|
|
|
|
describe('toolsAgentExecute', () => {
|
|
beforeEach(() => {
|
|
jest.clearAllMocks();
|
|
mockContext.logger = {
|
|
debug: jest.fn(),
|
|
info: jest.fn(),
|
|
warn: jest.fn(),
|
|
error: jest.fn(),
|
|
};
|
|
});
|
|
|
|
it('should process items sequentially when batchSize is not set', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockTools = [mock<Tool>()];
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
|
|
|
|
// Mock getNodeParameter to return default values
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'needsFallback') return false;
|
|
if (param === 'options.batching.batchSize') return defaultValue;
|
|
if (param === 'options.batching.delayBetweenBatches') return defaultValue;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: { text: 'success 1' } })
|
|
.mockResolvedValueOnce({ output: { text: 'success 2' } }),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockExecutor.invoke).toHaveBeenCalledTimes(2);
|
|
expect(result[0]).toHaveLength(2);
|
|
expect(result[0][0].json).toEqual({ output: { text: 'success 1' } });
|
|
expect(result[0][1].json).toEqual({ output: { text: 'success 2' } });
|
|
});
|
|
|
|
it('should process items in parallel within batches when batchSize > 1', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
{ json: { text: 'test input 3' } },
|
|
{ json: { text: 'test input 4' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockTools = [mock<Tool>()];
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'options.batching.batchSize') return 2;
|
|
if (param === 'options.batching.delayBetweenBatches') return 100;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'needsFallback') return false;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: { text: 'success 1' } })
|
|
.mockResolvedValueOnce({ output: { text: 'success 2' } })
|
|
.mockResolvedValueOnce({ output: { text: 'success 3' } })
|
|
.mockResolvedValueOnce({ output: { text: 'success 4' } }),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockExecutor.invoke).toHaveBeenCalledTimes(4); // Each item is processed individually
|
|
expect(result[0]).toHaveLength(4);
|
|
|
|
expect(result[0][0].json).toEqual({ output: { text: 'success 1' } });
|
|
expect(result[0][1].json).toEqual({ output: { text: 'success 2' } });
|
|
expect(result[0][2].json).toEqual({ output: { text: 'success 3' } });
|
|
expect(result[0][3].json).toEqual({ output: { text: 'success 4' } });
|
|
});
|
|
|
|
it('should handle errors in batch processing when continueOnFail is true', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockTools = [mock<Tool>()];
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'options.batching.batchSize') return 2;
|
|
if (param === 'options.batching.delayBetweenBatches') return 0;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'needsFallback') return false;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
mockContext.continueOnFail.mockReturnValue(true);
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: { text: 'success' } })
|
|
.mockRejectedValueOnce(new Error('Test error')),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(result[0]).toHaveLength(2);
|
|
expect(result[0][0].json).toEqual({ output: { text: 'success' } });
|
|
expect(result[0][1].json).toEqual({ error: 'Test error' });
|
|
});
|
|
|
|
it('should throw error in batch processing when continueOnFail is false', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockTools = [mock<Tool>()];
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'options.batching.batchSize') return 2;
|
|
if (param === 'options.batching.delayBetweenBatches') return 0;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'needsFallback') return false;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
mockContext.continueOnFail.mockReturnValue(false);
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success' }) })
|
|
.mockRejectedValueOnce(new Error('Test error')),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
await expect(toolsAgentExecute.call(mockContext)).rejects.toThrow('Test error');
|
|
});
|
|
|
|
it('should fetch output parser with correct item index', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
{ json: { text: 'test input 3' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockTools = [mock<Tool>()];
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
|
|
|
|
const mockParser1 = mock<outputParserModule.N8nStructuredOutputParser>();
|
|
const mockParser2 = mock<outputParserModule.N8nStructuredOutputParser>();
|
|
const mockParser3 = mock<outputParserModule.N8nStructuredOutputParser>();
|
|
|
|
const getOptionalOutputParserSpy = jest
|
|
.spyOn(outputParserModule, 'getOptionalOutputParser')
|
|
.mockResolvedValueOnce(mockParser1)
|
|
.mockResolvedValueOnce(mockParser2)
|
|
.mockResolvedValueOnce(mockParser3)
|
|
.mockResolvedValueOnce(undefined); // For the check call
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'options.batching.batchSize') return defaultValue;
|
|
if (param === 'options.batching.delayBetweenBatches') return defaultValue;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 1' }) })
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 2' }) })
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 3' }) }),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
await toolsAgentExecute.call(mockContext);
|
|
|
|
// Verify getOptionalOutputParser was called with correct indices
|
|
expect(getOptionalOutputParserSpy).toHaveBeenCalledTimes(6);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(1, mockContext, 0);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(2, mockContext, 0);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(3, mockContext, 1);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(4, mockContext, 0);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(5, mockContext, 2);
|
|
});
|
|
|
|
it('should pass different output parsers to getTools for each item', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockParser1 = mock<outputParserModule.N8nStructuredOutputParser>();
|
|
const mockParser2 = mock<outputParserModule.N8nStructuredOutputParser>();
|
|
|
|
jest
|
|
.spyOn(outputParserModule, 'getOptionalOutputParser')
|
|
.mockResolvedValueOnce(mockParser1)
|
|
.mockResolvedValueOnce(mockParser2);
|
|
|
|
const getToolsSpy = jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 1' }) })
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 2' }) }),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
await toolsAgentExecute.call(mockContext);
|
|
|
|
// Verify getTools was called with different parsers
|
|
expect(getToolsSpy).toHaveBeenCalledTimes(2);
|
|
expect(getToolsSpy).toHaveBeenNthCalledWith(1, mockContext, true, false);
|
|
expect(getToolsSpy).toHaveBeenNthCalledWith(2, mockContext, true, false);
|
|
});
|
|
|
|
it('should maintain correct parser-item mapping in batch processing', async () => {
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([
|
|
{ json: { text: 'test input 1' } },
|
|
{ json: { text: 'test input 2' } },
|
|
{ json: { text: 'test input 3' } },
|
|
{ json: { text: 'test input 4' } },
|
|
]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockParsers = [
|
|
mock<outputParserModule.N8nStructuredOutputParser>(),
|
|
mock<outputParserModule.N8nStructuredOutputParser>(),
|
|
mock<outputParserModule.N8nStructuredOutputParser>(),
|
|
mock<outputParserModule.N8nStructuredOutputParser>(),
|
|
];
|
|
|
|
const getOptionalOutputParserSpy = jest
|
|
.spyOn(outputParserModule, 'getOptionalOutputParser')
|
|
.mockImplementation(async (_ctx, index) => mockParsers[index || 0]);
|
|
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'options.batching.batchSize') return 2;
|
|
if (param === 'options.batching.delayBetweenBatches') return 0;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
const mockExecutor = {
|
|
invoke: jest
|
|
.fn()
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 1' }) })
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 2' }) })
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 3' }) })
|
|
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 4' }) }),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
await toolsAgentExecute.call(mockContext);
|
|
|
|
// Verify each item got its corresponding parser based on index
|
|
// It's called once per item + once to check if output parser is connected
|
|
expect(getOptionalOutputParserSpy).toHaveBeenCalledTimes(6);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(1, mockContext, 0);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(2, mockContext, 1);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(3, mockContext, 0);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(4, mockContext, 2);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(5, mockContext, 3);
|
|
expect(getOptionalOutputParserSpy).toHaveBeenNthCalledWith(6, mockContext, 0);
|
|
});
|
|
|
|
describe('streaming', () => {
|
|
let mockNode: INode;
|
|
let mockModel: BaseChatModel;
|
|
|
|
beforeEach(() => {
|
|
jest.clearAllMocks();
|
|
mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2.2;
|
|
mockContext.getNode.mockReturnValue(mockNode);
|
|
mockContext.getInputData.mockReturnValue([{ json: { text: 'test input' } }]);
|
|
|
|
mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockContext.getInputConnectionData.mockImplementation(async (type, _index) => {
|
|
if (type === 'ai_languageModel') return mockModel;
|
|
if (type === 'ai_memory') return undefined;
|
|
return undefined;
|
|
});
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'enableStreaming') return true;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'options.batching.batchSize') return defaultValue;
|
|
if (param === 'options.batching.delayBetweenBatches') return defaultValue;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
});
|
|
|
|
it('should handle streaming when enableStreaming is true', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
// Mock async generator for streamEvents
|
|
const mockStreamEvents = async function* () {
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: 'Hello ',
|
|
},
|
|
},
|
|
};
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: 'world!',
|
|
},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('begin', 0);
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('item', 0, 'Hello ');
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('item', 0, 'world!');
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('end', 0);
|
|
expect(mockExecutor.streamEvents).toHaveBeenCalledTimes(1);
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json.output).toBe('Hello world!');
|
|
});
|
|
|
|
it('should capture intermediate steps during streaming when returnIntermediateSteps is true', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'enableStreaming') return true;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'options.batching.batchSize') return defaultValue;
|
|
if (param === 'options.batching.delayBetweenBatches') return defaultValue;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: true, // Enable intermediate steps
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
// Mock async generator for streamEvents with tool calls
|
|
const mockStreamEvents = async function* () {
|
|
// LLM response with tool call
|
|
yield {
|
|
event: 'on_chat_model_end',
|
|
data: {
|
|
output: {
|
|
content: 'I need to call a tool',
|
|
tool_calls: [
|
|
{
|
|
id: 'call_123',
|
|
name: 'TestTool',
|
|
args: { input: 'test data' },
|
|
type: 'function',
|
|
},
|
|
],
|
|
},
|
|
},
|
|
};
|
|
// Tool execution result
|
|
yield {
|
|
event: 'on_tool_end',
|
|
name: 'TestTool',
|
|
data: {
|
|
output: 'Tool execution result',
|
|
},
|
|
};
|
|
// Final LLM response
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: 'Final response',
|
|
},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json.output).toBe('Final response');
|
|
|
|
// Check intermediate steps
|
|
expect(result[0][0].json.intermediateSteps).toBeDefined();
|
|
expect(result[0][0].json.intermediateSteps).toHaveLength(1);
|
|
|
|
const step = (result[0][0].json.intermediateSteps as any[])[0];
|
|
expect(step.action).toBeDefined();
|
|
expect(step.action.tool).toBe('TestTool');
|
|
expect(step.action.toolInput).toEqual({ input: 'test data' });
|
|
expect(step.action.toolCallId).toBe('call_123');
|
|
expect(step.action.type).toBe('function');
|
|
expect(step.action.messageLog).toBeDefined();
|
|
expect(step.observation).toBe('Tool execution result');
|
|
});
|
|
|
|
it('should use regular execution on version 2.2 when enableStreaming is false', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
|
|
const mockExecutor = {
|
|
invoke: jest.fn().mockResolvedValue({ output: 'Regular response' }),
|
|
streamEvents: jest.fn(),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).not.toHaveBeenCalled();
|
|
expect(mockExecutor.invoke).toHaveBeenCalledTimes(1);
|
|
expect(mockExecutor.streamEvents).not.toHaveBeenCalled();
|
|
expect(result[0][0].json.output).toBe('Regular response');
|
|
});
|
|
|
|
it('should use regular execution on version 2.2 when streaming is not available', async () => {
|
|
mockContext.isStreaming.mockReturnValue(false);
|
|
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
|
|
const mockExecutor = {
|
|
invoke: jest.fn().mockResolvedValue({ output: 'Regular response' }),
|
|
streamEvents: jest.fn(),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).not.toHaveBeenCalled();
|
|
expect(mockExecutor.invoke).toHaveBeenCalledTimes(1);
|
|
expect(mockExecutor.streamEvents).not.toHaveBeenCalled();
|
|
expect(result[0][0].json.output).toBe('Regular response');
|
|
});
|
|
|
|
it('should respect context window length from memory in streaming mode', async () => {
|
|
const mockMemory = {
|
|
loadMemoryVariables: jest.fn().mockResolvedValue({
|
|
chat_history: [
|
|
{ role: 'human', content: 'Message 1' },
|
|
{ role: 'ai', content: 'Response 1' },
|
|
],
|
|
}),
|
|
chatHistory: {
|
|
getMessages: jest.fn().mockResolvedValue([
|
|
{ role: 'human', content: 'Message 1' },
|
|
{ role: 'ai', content: 'Response 1' },
|
|
{ role: 'human', content: 'Message 2' },
|
|
{ role: 'ai', content: 'Response 2' },
|
|
]),
|
|
},
|
|
};
|
|
|
|
jest.spyOn(commonModule, 'getOptionalMemory').mockResolvedValue(mockMemory as any);
|
|
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
const mockStreamEvents = async function* () {
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: 'Response',
|
|
},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
await toolsAgentExecute.call(mockContext);
|
|
|
|
// Verify that memory.loadMemoryVariables was called instead of chatHistory.getMessages
|
|
expect(mockMemory.loadMemoryVariables).toHaveBeenCalledWith({});
|
|
expect(mockMemory.chatHistory.getMessages).not.toHaveBeenCalled();
|
|
|
|
// Verify that streamEvents was called with the filtered chat history from loadMemoryVariables
|
|
expect(mockExecutor.streamEvents).toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
chat_history: [
|
|
{ role: 'human', content: 'Message 1' },
|
|
{ role: 'ai', content: 'Response 1' },
|
|
],
|
|
}),
|
|
expect.any(Object),
|
|
);
|
|
});
|
|
|
|
it('should handle mixed message content types in streaming', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
// Mock async generator for streamEvents with mixed content types
|
|
const mockStreamEvents = async function* () {
|
|
// Message with array content including text and non-text types
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: [
|
|
{ type: 'text', text: 'Hello ' },
|
|
{ type: 'thinking', content: 'This is thinking content' },
|
|
{ type: 'text', text: 'world!' },
|
|
{ type: 'image', url: '' },
|
|
],
|
|
},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('begin', 0);
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('item', 0, 'Hello world!');
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('end', 0);
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json.output).toBe('Hello world!');
|
|
});
|
|
|
|
it('should handle string content in streaming', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
// Mock async generator for streamEvents with string content
|
|
const mockStreamEvents = async function* () {
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: 'Direct string content',
|
|
},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('begin', 0);
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('item', 0, 'Direct string content');
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('end', 0);
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json.output).toBe('Direct string content');
|
|
});
|
|
|
|
it('should ignore non-text message types in array content', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
// Mock async generator with only non-text content
|
|
const mockStreamEvents = async function* () {
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: [
|
|
{ type: 'thinking', content: 'This is thinking content' },
|
|
{ type: 'image', url: '' },
|
|
{ type: 'audio', data: 'audio-data' },
|
|
],
|
|
},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('begin', 0);
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('item', 0, '');
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('end', 0);
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json.output).toBe('');
|
|
});
|
|
|
|
it('should handle empty chunk content gracefully', async () => {
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue([mock<Tool>()]);
|
|
jest.spyOn(outputParserModule, 'getOptionalOutputParser').mockResolvedValue(undefined);
|
|
mockContext.isStreaming.mockReturnValue(true);
|
|
|
|
// Mock async generator with empty content
|
|
const mockStreamEvents = async function* () {
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {
|
|
content: null,
|
|
},
|
|
},
|
|
};
|
|
yield {
|
|
event: 'on_chat_model_stream',
|
|
data: {
|
|
chunk: {},
|
|
},
|
|
};
|
|
};
|
|
|
|
const mockExecutor = {
|
|
streamEvents: jest.fn().mockReturnValue(mockStreamEvents()),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockContext);
|
|
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('begin', 0);
|
|
expect(mockContext.sendChunk).toHaveBeenCalledWith('end', 0);
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json.output).toBe('');
|
|
});
|
|
});
|
|
|
|
it('should process items if SupplyDataContext is passed and isStreaming is not set', async () => {
|
|
const mockSupplyDataContext = mock<ISupplyDataFunctions>();
|
|
|
|
// @ts-expect-error isStreaming is not supported by SupplyDataFunctions, but mock object still resolves it
|
|
mockSupplyDataContext.isStreaming = undefined;
|
|
|
|
mockSupplyDataContext.logger = {
|
|
debug: jest.fn(),
|
|
info: jest.fn(),
|
|
warn: jest.fn(),
|
|
error: jest.fn(),
|
|
};
|
|
|
|
const mockNode = mock<INode>();
|
|
mockNode.typeVersion = 2.2; // version where streaming is supported
|
|
mockSupplyDataContext.getNode.mockReturnValue(mockNode);
|
|
mockSupplyDataContext.getInputData.mockReturnValue([{ json: { text: 'test input 1' } }]);
|
|
|
|
const mockModel = mock<BaseChatModel>();
|
|
mockModel.bindTools = jest.fn();
|
|
mockModel.lc_namespace = ['chat_models'];
|
|
mockSupplyDataContext.getInputConnectionData.mockResolvedValue(mockModel);
|
|
|
|
const mockTools = [mock<Tool>()];
|
|
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
|
|
|
|
// Mock getNodeParameter to return default values
|
|
mockSupplyDataContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
|
|
if (param === 'enableStreaming') return true;
|
|
if (param === 'text') return 'test input';
|
|
if (param === 'needsFallback') return false;
|
|
if (param === 'options.batching.batchSize') return defaultValue;
|
|
if (param === 'options.batching.delayBetweenBatches') return defaultValue;
|
|
if (param === 'options')
|
|
return {
|
|
systemMessage: 'You are a helpful assistant',
|
|
maxIterations: 10,
|
|
returnIntermediateSteps: false,
|
|
passthroughBinaryImages: true,
|
|
};
|
|
return defaultValue;
|
|
});
|
|
|
|
const mockExecutor = {
|
|
invoke: jest.fn().mockResolvedValueOnce({ output: { text: 'success 1' } }),
|
|
};
|
|
|
|
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
|
|
|
|
const result = await toolsAgentExecute.call(mockSupplyDataContext);
|
|
|
|
expect(mockExecutor.invoke).toHaveBeenCalledTimes(1);
|
|
expect(result[0]).toHaveLength(1);
|
|
expect(result[0][0].json).toEqual({ output: { text: 'success 1' } });
|
|
});
|
|
});
|