mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
150 lines
3.9 KiB
TypeScript
150 lines
3.9 KiB
TypeScript
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
|
import type {
|
|
IExecuteFunctions,
|
|
INodeExecutionData,
|
|
INodeType,
|
|
INodeTypeDescription,
|
|
} from 'n8n-workflow';
|
|
import { NodeApiError, NodeConnectionTypes, NodeOperationError } from 'n8n-workflow';
|
|
|
|
import { getPromptInputByType } from '@utils/helpers';
|
|
import { getOptionalOutputParser } from '@utils/output_parsers/N8nOutputParser';
|
|
|
|
// Import from centralized module
|
|
import {
|
|
executeChain,
|
|
formatResponse,
|
|
getInputs,
|
|
nodeProperties,
|
|
type MessageTemplate,
|
|
} from './methods';
|
|
import {
|
|
getCustomErrorMessage as getCustomOpenAiErrorMessage,
|
|
isOpenAiError,
|
|
} from '../../vendors/OpenAi/helpers/error-handling';
|
|
|
|
/**
|
|
* Basic LLM Chain Node Implementation
|
|
* Allows connecting to language models with optional structured output parsing
|
|
*/
|
|
export class ChainLlm implements INodeType {
|
|
description: INodeTypeDescription = {
|
|
displayName: 'Basic LLM Chain',
|
|
name: 'chainLlm',
|
|
icon: 'fa:link',
|
|
iconColor: 'black',
|
|
group: ['transform'],
|
|
version: [1, 1.1, 1.2, 1.3, 1.4, 1.5],
|
|
description: 'A simple chain to prompt a large language model',
|
|
defaults: {
|
|
name: 'Basic LLM Chain',
|
|
color: '#909298',
|
|
},
|
|
codex: {
|
|
alias: ['LangChain'],
|
|
categories: ['AI'],
|
|
subcategories: {
|
|
AI: ['Chains', 'Root Nodes'],
|
|
},
|
|
resources: {
|
|
primaryDocumentation: [
|
|
{
|
|
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/',
|
|
},
|
|
],
|
|
},
|
|
},
|
|
inputs: `={{ ((parameter) => { ${getInputs.toString()}; return getInputs(parameter) })($parameter) }}`,
|
|
outputs: [NodeConnectionTypes.Main],
|
|
credentials: [],
|
|
properties: nodeProperties,
|
|
};
|
|
|
|
/**
|
|
* Main execution method for the node
|
|
*/
|
|
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
|
this.logger.debug('Executing Basic LLM Chain');
|
|
const items = this.getInputData();
|
|
const returnData: INodeExecutionData[] = [];
|
|
|
|
// Process each input item
|
|
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
|
try {
|
|
// Get the language model
|
|
const llm = (await this.getInputConnectionData(
|
|
NodeConnectionTypes.AiLanguageModel,
|
|
0,
|
|
)) as BaseLanguageModel;
|
|
|
|
// Get output parser if configured
|
|
const outputParser = await getOptionalOutputParser(this);
|
|
|
|
// Get user prompt based on node version
|
|
let prompt: string;
|
|
|
|
if (this.getNode().typeVersion <= 1.3) {
|
|
prompt = this.getNodeParameter('prompt', itemIndex) as string;
|
|
} else {
|
|
prompt = getPromptInputByType({
|
|
ctx: this,
|
|
i: itemIndex,
|
|
inputKey: 'text',
|
|
promptTypeKey: 'promptType',
|
|
});
|
|
}
|
|
|
|
// Validate prompt
|
|
if (prompt === undefined) {
|
|
throw new NodeOperationError(this.getNode(), "The 'prompt' parameter is empty.");
|
|
}
|
|
|
|
// Get chat messages if configured
|
|
const messages = this.getNodeParameter(
|
|
'messages.messageValues',
|
|
itemIndex,
|
|
[],
|
|
) as MessageTemplate[];
|
|
|
|
// Execute the chain
|
|
const responses = await executeChain({
|
|
context: this,
|
|
itemIndex,
|
|
query: prompt,
|
|
llm,
|
|
outputParser,
|
|
messages,
|
|
});
|
|
|
|
// Process each response and add to return data
|
|
responses.forEach((response) => {
|
|
returnData.push({
|
|
json: formatResponse(response),
|
|
});
|
|
});
|
|
} catch (error) {
|
|
// Handle OpenAI specific rate limit errors
|
|
if (error instanceof NodeApiError && isOpenAiError(error.cause)) {
|
|
const openAiErrorCode: string | undefined = (error.cause as any).error?.code;
|
|
if (openAiErrorCode) {
|
|
const customMessage = getCustomOpenAiErrorMessage(openAiErrorCode);
|
|
if (customMessage) {
|
|
error.message = customMessage;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Continue on failure if configured
|
|
if (this.continueOnFail()) {
|
|
returnData.push({ json: { error: error.message }, pairedItem: { item: itemIndex } });
|
|
continue;
|
|
}
|
|
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
return [returnData];
|
|
}
|
|
}
|