Files
n8n-enterprise-unlocked/packages/@n8n/nodes-langchain/nodes/embeddings/EmbeddingsGoogleVertex/EmbeddingsGoogleVertex.node.ts
Benjamin Schroth 85cbfb64c0 feat: Add support for google vertex embeddings (#14359)
Co-authored-by: Oleg Ivaniv <me@olegivaniv.com>
2025-04-03 10:10:16 +02:00

161 lines
4.4 KiB
TypeScript

/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
import { ProjectsClient } from '@google-cloud/resource-manager';
import { VertexAIEmbeddings } from '@langchain/google-vertexai';
import { formatPrivateKey } from 'n8n-nodes-base/dist/utils/utilities';
import { NodeConnectionTypes } from 'n8n-workflow';
import type {
ILoadOptionsFunctions,
INodeType,
INodeTypeDescription,
ISupplyDataFunctions,
SupplyData,
} from 'n8n-workflow';
import { logWrapper } from '@utils/logWrapper';
import { getConnectionHintNoticeField } from '@utils/sharedFields';
export class EmbeddingsGoogleVertex implements INodeType {
methods = {
listSearch: {
async gcpProjectsList(this: ILoadOptionsFunctions) {
const results: Array<{ name: string; value: string }> = [];
const credentials = await this.getCredentials('googleApi');
const privateKey = formatPrivateKey(credentials.privateKey as string);
const email = (credentials.email as string).trim();
const client = new ProjectsClient({
credentials: {
client_email: email,
private_key: privateKey,
},
});
const [projects] = await client.searchProjects();
for (const project of projects) {
if (project.projectId) {
results.push({
name: project.displayName ?? project.projectId,
value: project.projectId,
});
}
}
return { results };
},
},
};
description: INodeTypeDescription = {
displayName: 'Embeddings Google Vertex',
name: 'embeddingsGoogleVertex',
icon: 'file:google.svg',
group: ['transform'],
version: 1,
description: 'Use Google Vertex Embeddings',
defaults: {
name: 'Embeddings Google Vertex',
},
requestDefaults: {
ignoreHttpStatusErrors: true,
baseURL: '={{ $credentials.host }}',
},
credentials: [
{
name: 'googleApi',
required: true,
},
],
codex: {
categories: ['AI'],
subcategories: {
AI: ['Embeddings'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsgooglevertex/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [],
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
outputs: [NodeConnectionTypes.AiEmbedding],
outputNames: ['Embeddings'],
properties: [
getConnectionHintNoticeField([NodeConnectionTypes.AiVectorStore]),
{
displayName:
'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings. You can find available models <a href="https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api">here</a>.',
name: 'notice',
type: 'notice',
default: '',
},
{
displayName: 'Project ID',
name: 'projectId',
type: 'resourceLocator',
default: { mode: 'list', value: '' },
required: true,
description: 'Select or enter your Google Cloud project ID',
modes: [
{
displayName: 'From List',
name: 'list',
type: 'list',
typeOptions: {
searchListMethod: 'gcpProjectsList',
},
},
{
displayName: 'ID',
name: 'id',
type: 'string',
},
],
},
{
displayName: 'Model Name',
name: 'modelName',
type: 'string',
description:
'The model which will generate the embeddings. <a href="https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api">Learn more</a>.',
default: 'text-embedding-005',
},
],
};
async supplyData(this: ISupplyDataFunctions, itemIndex: number): Promise<SupplyData> {
const credentials = await this.getCredentials('googleApi');
const privateKey = formatPrivateKey(credentials.privateKey as string);
const email = (credentials.email as string).trim();
const region = credentials.region as string;
const modelName = this.getNodeParameter('modelName', itemIndex) as string;
const projectId = this.getNodeParameter('projectId', itemIndex, '', {
extractValue: true,
}) as string;
const embeddings = new VertexAIEmbeddings({
authOptions: {
projectId,
credentials: {
client_email: email,
private_key: privateKey,
},
},
location: region,
model: modelName,
});
return {
response: logWrapper(embeddings, this),
};
}
}