mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
96 lines
2.7 KiB
TypeScript
96 lines
2.7 KiB
TypeScript
import {
|
||
type IExecuteFunctions,
|
||
type INodeExecutionData,
|
||
NodeConnectionType,
|
||
NodeOperationError,
|
||
} from 'n8n-workflow';
|
||
|
||
import type { BaseOutputParser } from '@langchain/core/output_parsers';
|
||
import { PromptTemplate } from '@langchain/core/prompts';
|
||
import { CombiningOutputParser } from 'langchain/output_parsers';
|
||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||
import { PlanAndExecuteAgentExecutor } from 'langchain/experimental/plan_and_execute';
|
||
import {
|
||
getConnectedTools,
|
||
getOptionalOutputParsers,
|
||
getPromptInputByType,
|
||
} from '../../../../../utils/helpers';
|
||
import { getTracingConfig } from '../../../../../utils/tracing';
|
||
|
||
export async function planAndExecuteAgentExecute(
|
||
this: IExecuteFunctions,
|
||
nodeVersion: number,
|
||
): Promise<INodeExecutionData[][]> {
|
||
this.logger.verbose('Executing PlanAndExecute Agent');
|
||
const model = (await this.getInputConnectionData(
|
||
NodeConnectionType.AiLanguageModel,
|
||
0,
|
||
)) as BaseChatModel;
|
||
|
||
const tools = await getConnectedTools(this, nodeVersion >= 1.5);
|
||
|
||
const outputParsers = await getOptionalOutputParsers(this);
|
||
|
||
const options = this.getNodeParameter('options', 0, {}) as {
|
||
humanMessageTemplate?: string;
|
||
};
|
||
|
||
const agentExecutor = await PlanAndExecuteAgentExecutor.fromLLMAndTools({
|
||
llm: model,
|
||
tools,
|
||
humanMessageTemplate: options.humanMessageTemplate,
|
||
});
|
||
|
||
const returnData: INodeExecutionData[] = [];
|
||
|
||
let outputParser: BaseOutputParser | undefined;
|
||
let prompt: PromptTemplate | undefined;
|
||
if (outputParsers.length) {
|
||
outputParser =
|
||
outputParsers.length === 1 ? outputParsers[0] : new CombiningOutputParser(...outputParsers);
|
||
|
||
const formatInstructions = outputParser.getFormatInstructions();
|
||
|
||
prompt = new PromptTemplate({
|
||
template: '{input}\n{formatInstructions}',
|
||
inputVariables: ['input'],
|
||
partialVariables: { formatInstructions },
|
||
});
|
||
}
|
||
|
||
const items = this.getInputData();
|
||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||
let input;
|
||
if (this.getNode().typeVersion <= 1.2) {
|
||
input = this.getNodeParameter('text', itemIndex) as string;
|
||
} else {
|
||
input = getPromptInputByType({
|
||
ctx: this,
|
||
i: itemIndex,
|
||
inputKey: 'text',
|
||
promptTypeKey: 'promptType',
|
||
});
|
||
}
|
||
|
||
if (input === undefined) {
|
||
throw new NodeOperationError(this.getNode(), 'The ‘text‘ parameter is empty.');
|
||
}
|
||
|
||
if (prompt) {
|
||
input = (await prompt.invoke({ input })).value;
|
||
}
|
||
|
||
let response = await agentExecutor
|
||
.withConfig(getTracingConfig(this))
|
||
.invoke({ input, outputParsers });
|
||
|
||
if (outputParser) {
|
||
response = { output: await outputParser.parse(response.output as string) };
|
||
}
|
||
|
||
returnData.push({ json: response });
|
||
}
|
||
|
||
return await this.prepareOutputData(returnData);
|
||
}
|