Files
n8n-enterprise-unlocked/packages/@n8n/nodes-langchain/nodes/agents/Agent/agents/SqlAgent/execute.ts
2024-04-08 22:51:49 +02:00

148 lines
4.6 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import {
type IExecuteFunctions,
type INodeExecutionData,
NodeConnectionType,
NodeOperationError,
type IDataObject,
} from 'n8n-workflow';
import { SqlDatabase } from 'langchain/sql_db';
import type { SqlCreatePromptArgs } from 'langchain/agents/toolkits/sql';
import { SqlToolkit, createSqlAgent } from 'langchain/agents/toolkits/sql';
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
import type { BaseChatMemory } from '@langchain/community/memory/chat_memory';
import type { DataSource } from '@n8n/typeorm';
import { getPromptInputByType, serializeChatHistory } from '../../../../../utils/helpers';
import { getTracingConfig } from '../../../../../utils/tracing';
import { getSqliteDataSource } from './other/handlers/sqlite';
import { getPostgresDataSource } from './other/handlers/postgres';
import { SQL_PREFIX, SQL_SUFFIX } from './other/prompts';
import { getMysqlDataSource } from './other/handlers/mysql';
const parseTablesString = (tablesString: string) =>
tablesString
.split(',')
.map((table) => table.trim())
.filter((table) => table.length > 0);
export async function sqlAgentAgentExecute(
this: IExecuteFunctions,
nodeVersion: number,
): Promise<INodeExecutionData[][]> {
this.logger.verbose('Executing SQL Agent');
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
for (let i = 0; i < items.length; i++) {
const item = items[i];
let input;
if (this.getNode().typeVersion <= 1.2) {
input = this.getNodeParameter('input', i) as string;
} else {
input = getPromptInputByType({
ctx: this,
i,
inputKey: 'text',
promptTypeKey: 'promptType',
});
}
if (input === undefined) {
throw new NodeOperationError(this.getNode(), 'The prompt parameter is empty.');
}
const options = this.getNodeParameter('options', i, {});
const selectedDataSource = this.getNodeParameter('dataSource', i, 'sqlite') as
| 'mysql'
| 'postgres'
| 'sqlite';
const includedSampleRows = options.includedSampleRows as number;
const includedTablesArray = parseTablesString((options.includedTables as string) ?? '');
const ignoredTablesArray = parseTablesString((options.ignoredTables as string) ?? '');
let dataSource: DataSource | null = null;
if (selectedDataSource === 'sqlite') {
if (!item.binary) {
throw new NodeOperationError(
this.getNode(),
'No binary data found, please connect a binary to the input if you want to use SQLite as data source',
);
}
const binaryPropertyName = this.getNodeParameter('binaryPropertyName', i, 'data');
dataSource = await getSqliteDataSource.call(this, item.binary, binaryPropertyName);
}
if (selectedDataSource === 'postgres') {
dataSource = await getPostgresDataSource.call(this);
}
if (selectedDataSource === 'mysql') {
dataSource = await getMysqlDataSource.call(this);
}
if (!dataSource) {
throw new NodeOperationError(
this.getNode(),
'No data source found, please configure data source',
);
}
const agentOptions: SqlCreatePromptArgs = {
topK: (options.topK as number) ?? 10,
prefix: (options.prefixPrompt as string) ?? SQL_PREFIX,
suffix: (options.suffixPrompt as string) ?? SQL_SUFFIX,
inputVariables: ['chatHistory', 'input', 'agent_scratchpad'],
};
const dbInstance = await SqlDatabase.fromDataSourceParams({
appDataSource: dataSource,
includesTables: includedTablesArray.length > 0 ? includedTablesArray : undefined,
ignoreTables: ignoredTablesArray.length > 0 ? ignoredTablesArray : undefined,
sampleRowsInTableInfo: includedSampleRows ?? 3,
});
const toolkit = new SqlToolkit(dbInstance, model);
const agentExecutor = createSqlAgent(model, toolkit, agentOptions);
const memory = (await this.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as
| BaseChatMemory
| undefined;
agentExecutor.memory = memory;
let chatHistory = '';
if (memory) {
const messages = await memory.chatHistory.getMessages();
chatHistory = serializeChatHistory(messages);
}
let response: IDataObject;
try {
response = await agentExecutor.withConfig(getTracingConfig(this)).invoke({
input,
signal: this.getExecutionCancelSignal(),
chatHistory,
});
} catch (error) {
if ((error.message as IDataObject)?.output) {
response = error.message as IDataObject;
} else {
throw new NodeOperationError(this.getNode(), error.message as string, { itemIndex: i });
}
}
returnData.push({ json: response });
}
return await this.prepareOutputData(returnData);
}