Files
n8n-enterprise-unlocked/packages/@n8n/nodes-langchain/nodes/text_splitters/TextSplitterTokenSplitter/TokenTextSplitter.ts
2025-07-01 14:08:51 +02:00

94 lines
2.5 KiB
TypeScript

import type { TokenTextSplitterParams } from '@langchain/textsplitters';
import { TextSplitter } from '@langchain/textsplitters';
import type * as tiktoken from 'js-tiktoken';
import { hasLongSequentialRepeat } from '@utils/helpers';
import { getEncoding } from '@utils/tokenizer/tiktoken';
import { estimateTextSplitsByTokens } from '@utils/tokenizer/token-estimator';
/**
* Implementation of splitter which looks at tokens.
* This is override of the LangChain TokenTextSplitter
* to use the n8n tokenizer utility which uses local JSON encodings
*/
export class TokenTextSplitter extends TextSplitter implements TokenTextSplitterParams {
static lc_name() {
return 'TokenTextSplitter';
}
encodingName: tiktoken.TiktokenEncoding;
allowedSpecial: 'all' | string[];
disallowedSpecial: 'all' | string[];
private tokenizer: tiktoken.Tiktoken | undefined;
constructor(fields?: Partial<TokenTextSplitterParams>) {
super(fields);
this.encodingName = fields?.encodingName ?? 'cl100k_base';
this.allowedSpecial = fields?.allowedSpecial ?? [];
this.disallowedSpecial = fields?.disallowedSpecial ?? 'all';
}
async splitText(text: string): Promise<string[]> {
try {
// Validate input
if (!text || typeof text !== 'string') {
return [];
}
// Check for repetitive content
if (hasLongSequentialRepeat(text)) {
const splits = estimateTextSplitsByTokens(
text,
this.chunkSize,
this.chunkOverlap,
this.encodingName,
);
return splits;
}
// Use tiktoken for normal text
try {
if (!this.tokenizer) {
this.tokenizer = await getEncoding(this.encodingName);
}
const splits: string[] = [];
const input_ids = this.tokenizer.encode(text, this.allowedSpecial, this.disallowedSpecial);
let start_idx = 0;
let chunkCount = 0;
while (start_idx < input_ids.length) {
if (start_idx > 0) {
start_idx = Math.max(0, start_idx - this.chunkOverlap);
}
const end_idx = Math.min(start_idx + this.chunkSize, input_ids.length);
const chunk_ids = input_ids.slice(start_idx, end_idx);
splits.push(this.tokenizer.decode(chunk_ids));
chunkCount++;
start_idx = end_idx;
}
return splits;
} catch (tiktokenError) {
// Fall back to character-based splitting if tiktoken fails
return estimateTextSplitsByTokens(
text,
this.chunkSize,
this.chunkOverlap,
this.encodingName,
);
}
} catch (error) {
// Return empty array on complete failure
return [];
}
}
}