mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-18 02:21:13 +00:00
391 lines
9.4 KiB
TypeScript
391 lines
9.4 KiB
TypeScript
/* eslint-disable @typescript-eslint/no-unsafe-member-access */
|
|
|
|
/* eslint-disable @typescript-eslint/unbound-method */
|
|
/* eslint-disable @typescript-eslint/no-unsafe-assignment */
|
|
import type { Serialized } from '@langchain/core/load/serializable';
|
|
import type { LLMResult } from '@langchain/core/outputs';
|
|
import { mock } from 'jest-mock-extended';
|
|
import type { IDataObject, ISupplyDataFunctions } from 'n8n-workflow';
|
|
import { NodeOperationError, NodeApiError } from 'n8n-workflow';
|
|
|
|
import { N8nLlmTracing } from '../N8nLlmTracing';
|
|
|
|
describe('N8nLlmTracing', () => {
|
|
const executionFunctions = mock<ISupplyDataFunctions>({
|
|
addInputData: jest.fn().mockReturnValue({ index: 0 }),
|
|
addOutputData: jest.fn(),
|
|
getNode: jest.fn().mockReturnValue({ name: 'TestNode' }),
|
|
getNextRunIndex: jest.fn().mockReturnValue(1),
|
|
});
|
|
|
|
beforeEach(() => {
|
|
jest.clearAllMocks();
|
|
});
|
|
|
|
describe('tokensUsageParser', () => {
|
|
it('should parse OpenAI format tokens correctly', () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const llmResult: LLMResult = {
|
|
generations: [],
|
|
llmOutput: {
|
|
tokenUsage: {
|
|
completionTokens: 100,
|
|
promptTokens: 50,
|
|
},
|
|
},
|
|
};
|
|
|
|
const result = tracer.options.tokensUsageParser(llmResult);
|
|
|
|
expect(result).toEqual({
|
|
completionTokens: 100,
|
|
promptTokens: 50,
|
|
totalTokens: 150,
|
|
});
|
|
});
|
|
|
|
it('should handle missing token data', () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const llmResult: LLMResult = {
|
|
generations: [],
|
|
};
|
|
|
|
const result = tracer.options.tokensUsageParser(llmResult);
|
|
|
|
expect(result).toEqual({
|
|
completionTokens: 0,
|
|
promptTokens: 0,
|
|
totalTokens: 0,
|
|
});
|
|
});
|
|
|
|
it('should handle undefined llmOutput', () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const llmResult: LLMResult = {
|
|
generations: [],
|
|
llmOutput: undefined,
|
|
};
|
|
|
|
const result = tracer.options.tokensUsageParser(llmResult);
|
|
|
|
expect(result).toEqual({
|
|
completionTokens: 0,
|
|
promptTokens: 0,
|
|
totalTokens: 0,
|
|
});
|
|
});
|
|
|
|
it('should use custom tokensUsageParser when provided', () => {
|
|
// Custom parser for Cohere format
|
|
const customParser = (result: LLMResult) => {
|
|
let totalInputTokens = 0;
|
|
let totalOutputTokens = 0;
|
|
|
|
result.generations?.forEach((generationArray) => {
|
|
generationArray.forEach((gen) => {
|
|
const inputTokens = gen.generationInfo?.meta?.tokens?.inputTokens ?? 0;
|
|
const outputTokens = gen.generationInfo?.meta?.tokens?.outputTokens ?? 0;
|
|
|
|
totalInputTokens += inputTokens;
|
|
totalOutputTokens += outputTokens;
|
|
});
|
|
});
|
|
|
|
return {
|
|
completionTokens: totalOutputTokens,
|
|
promptTokens: totalInputTokens,
|
|
totalTokens: totalInputTokens + totalOutputTokens,
|
|
};
|
|
};
|
|
|
|
const tracer = new N8nLlmTracing(executionFunctions, {
|
|
tokensUsageParser: customParser,
|
|
});
|
|
|
|
const llmResult: LLMResult = {
|
|
generations: [
|
|
[
|
|
{
|
|
text: 'Response 1',
|
|
generationInfo: {
|
|
meta: {
|
|
tokens: {
|
|
inputTokens: 30,
|
|
outputTokens: 40,
|
|
},
|
|
},
|
|
},
|
|
},
|
|
],
|
|
[
|
|
{
|
|
text: 'Response 2',
|
|
generationInfo: {
|
|
meta: {
|
|
tokens: {
|
|
inputTokens: 20,
|
|
outputTokens: 60,
|
|
},
|
|
},
|
|
},
|
|
},
|
|
],
|
|
],
|
|
};
|
|
|
|
const result = tracer.options.tokensUsageParser(llmResult);
|
|
|
|
expect(result).toEqual({
|
|
completionTokens: 100, // 40 + 60
|
|
promptTokens: 50, // 30 + 20
|
|
totalTokens: 150,
|
|
});
|
|
});
|
|
|
|
it('should handle Anthropic format with custom parser', () => {
|
|
const anthropicParser = (result: LLMResult) => {
|
|
const usage = (result?.llmOutput?.usage as {
|
|
input_tokens: number;
|
|
output_tokens: number;
|
|
}) ?? {
|
|
input_tokens: 0,
|
|
output_tokens: 0,
|
|
};
|
|
return {
|
|
completionTokens: usage.output_tokens,
|
|
promptTokens: usage.input_tokens,
|
|
totalTokens: usage.input_tokens + usage.output_tokens,
|
|
};
|
|
};
|
|
|
|
const tracer = new N8nLlmTracing(executionFunctions, {
|
|
tokensUsageParser: anthropicParser,
|
|
});
|
|
|
|
const llmResult: LLMResult = {
|
|
generations: [],
|
|
llmOutput: {
|
|
usage: {
|
|
input_tokens: 75,
|
|
output_tokens: 125,
|
|
},
|
|
},
|
|
};
|
|
|
|
const result = tracer.options.tokensUsageParser(llmResult);
|
|
|
|
expect(result).toEqual({
|
|
completionTokens: 125,
|
|
promptTokens: 75,
|
|
totalTokens: 200,
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('handleLLMEnd', () => {
|
|
it('should process LLM output and use token usage when available', async () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const runId = 'test-run-id';
|
|
|
|
// Set up run details
|
|
tracer.runsMap[runId] = {
|
|
index: 0,
|
|
messages: ['Test prompt'],
|
|
options: { model: 'test-model' },
|
|
};
|
|
|
|
const output: LLMResult = {
|
|
generations: [
|
|
[
|
|
{
|
|
text: 'Test response',
|
|
generationInfo: { meta: {} },
|
|
},
|
|
],
|
|
],
|
|
llmOutput: {
|
|
tokenUsage: {
|
|
completionTokens: 50,
|
|
promptTokens: 25,
|
|
},
|
|
},
|
|
};
|
|
|
|
await tracer.handleLLMEnd(output, runId);
|
|
|
|
expect(executionFunctions.addOutputData).toHaveBeenCalledWith(
|
|
'ai_languageModel',
|
|
0,
|
|
[
|
|
[
|
|
{
|
|
json: expect.objectContaining({
|
|
response: { generations: output.generations },
|
|
tokenUsage: {
|
|
completionTokens: 50,
|
|
promptTokens: 25,
|
|
totalTokens: 75,
|
|
},
|
|
}),
|
|
},
|
|
],
|
|
],
|
|
undefined,
|
|
undefined,
|
|
);
|
|
});
|
|
|
|
it('should use token estimates when actual usage is not available', async () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const runId = 'test-run-id';
|
|
|
|
// Set up run details and prompt estimate
|
|
tracer.runsMap[runId] = {
|
|
index: 0,
|
|
messages: ['Test prompt'],
|
|
options: { model: 'test-model' },
|
|
};
|
|
tracer.promptTokensEstimate = 30;
|
|
|
|
const output: LLMResult = {
|
|
generations: [
|
|
[
|
|
{
|
|
text: 'Test response',
|
|
generationInfo: { meta: {} },
|
|
},
|
|
],
|
|
],
|
|
llmOutput: {},
|
|
};
|
|
|
|
jest.spyOn(tracer, 'estimateTokensFromGeneration').mockResolvedValue(45);
|
|
|
|
await tracer.handleLLMEnd(output, runId);
|
|
|
|
expect(executionFunctions.addOutputData).toHaveBeenCalledWith(
|
|
'ai_languageModel',
|
|
0,
|
|
[
|
|
[
|
|
{
|
|
json: expect.objectContaining({
|
|
response: { generations: output.generations },
|
|
tokenUsageEstimate: {
|
|
completionTokens: 45,
|
|
promptTokens: 30,
|
|
totalTokens: 75,
|
|
},
|
|
}),
|
|
},
|
|
],
|
|
],
|
|
undefined,
|
|
undefined,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('handleLLMError', () => {
|
|
it('should handle NodeError with custom error description mapper', async () => {
|
|
const customMapper = jest.fn().mockReturnValue('Mapped error description');
|
|
const tracer = new N8nLlmTracing(executionFunctions, {
|
|
errorDescriptionMapper: customMapper,
|
|
});
|
|
|
|
const runId = 'test-run-id';
|
|
tracer.runsMap[runId] = { index: 0, messages: [], options: {} };
|
|
|
|
const error = new NodeApiError(executionFunctions.getNode(), {
|
|
message: 'Test error',
|
|
description: 'Original description',
|
|
});
|
|
|
|
await tracer.handleLLMError(error, runId);
|
|
|
|
expect(customMapper).toHaveBeenCalledWith(error);
|
|
expect(error.description).toBe('Mapped error description');
|
|
expect(executionFunctions.addOutputData).toHaveBeenCalledWith('ai_languageModel', 0, error);
|
|
});
|
|
|
|
it('should wrap non-NodeError in NodeOperationError', async () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const runId = 'test-run-id';
|
|
tracer.runsMap[runId] = { index: 0, messages: [], options: {} };
|
|
|
|
const error = new Error('Regular error');
|
|
|
|
await tracer.handleLLMError(error, runId);
|
|
|
|
expect(executionFunctions.addOutputData).toHaveBeenCalledWith(
|
|
'ai_languageModel',
|
|
0,
|
|
expect.any(NodeOperationError),
|
|
);
|
|
});
|
|
|
|
it('should filter out non-x- headers from error objects', async () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const runId = 'test-run-id';
|
|
tracer.runsMap[runId] = { index: 0, messages: [], options: {} };
|
|
|
|
const error = {
|
|
message: 'API Error',
|
|
headers: {
|
|
'x-request-id': 'keep-this',
|
|
authorization: 'remove-this',
|
|
'x-rate-limit': 'keep-this-too',
|
|
'content-type': 'remove-this-too',
|
|
},
|
|
};
|
|
|
|
await tracer.handleLLMError(error as IDataObject, runId);
|
|
|
|
expect(error.headers).toEqual({
|
|
'x-request-id': 'keep-this',
|
|
'x-rate-limit': 'keep-this-too',
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('handleLLMStart', () => {
|
|
it('should estimate tokens and create run details', async () => {
|
|
const tracer = new N8nLlmTracing(executionFunctions);
|
|
const runId = 'test-run-id';
|
|
const prompts = ['Prompt 1', 'Prompt 2'];
|
|
|
|
jest.spyOn(tracer, 'estimateTokensFromStringList').mockResolvedValue(100);
|
|
|
|
const llm = {
|
|
type: 'constructor',
|
|
kwargs: { model: 'test-model' },
|
|
};
|
|
|
|
await tracer.handleLLMStart(llm as unknown as Serialized, prompts, runId);
|
|
|
|
expect(tracer.estimateTokensFromStringList).toHaveBeenCalledWith(prompts);
|
|
expect(tracer.promptTokensEstimate).toBe(100);
|
|
expect(tracer.runsMap[runId]).toEqual({
|
|
index: 0,
|
|
options: { model: 'test-model' },
|
|
messages: prompts,
|
|
});
|
|
expect(executionFunctions.addInputData).toHaveBeenCalledWith(
|
|
'ai_languageModel',
|
|
[
|
|
[
|
|
{
|
|
json: {
|
|
messages: prompts,
|
|
estimatedTokens: 100,
|
|
options: { model: 'test-model' },
|
|
},
|
|
},
|
|
],
|
|
],
|
|
undefined,
|
|
);
|
|
});
|
|
});
|
|
});
|