mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
169 lines
5.0 KiB
TypeScript
169 lines
5.0 KiB
TypeScript
import type { BaseChatModel } from '@langchain/core/language_models/chat_models.js';
|
|
import type { LangChainTracer } from '@langchain/core/tracers/tracer_langchain.js';
|
|
import { evaluate } from 'langsmith/evaluation';
|
|
import type { INodeTypeDescription } from 'n8n-workflow';
|
|
import pc from 'picocolors';
|
|
|
|
import { createLangsmithEvaluator } from './evaluator.js';
|
|
import type { ChatPayload } from '../../src/workflow-builder-agent.js';
|
|
import type { WorkflowState } from '../../src/workflow-state.js';
|
|
import { setupTestEnvironment, createAgent } from '../core/environment.js';
|
|
import {
|
|
generateRunId,
|
|
safeExtractUsage,
|
|
isWorkflowStateValues,
|
|
extractMessageContent,
|
|
} from '../types/langsmith.js';
|
|
import { formatHeader } from '../utils/evaluation-helpers.js';
|
|
|
|
/**
|
|
* Creates a workflow generation function for Langsmith evaluation
|
|
* @param parsedNodeTypes - Node types
|
|
* @param llm - Language model
|
|
* @param tracer - Optional tracer
|
|
* @returns Function that generates workflows from inputs
|
|
*/
|
|
function createWorkflowGenerator(
|
|
parsedNodeTypes: INodeTypeDescription[],
|
|
llm: BaseChatModel,
|
|
tracer?: LangChainTracer,
|
|
) {
|
|
return async (inputs: typeof WorkflowState.State) => {
|
|
// Generate a unique ID for this evaluation run
|
|
const runId = generateRunId();
|
|
|
|
// Validate inputs
|
|
if (!inputs.messages || !Array.isArray(inputs.messages) || inputs.messages.length === 0) {
|
|
throw new Error('No messages provided in inputs');
|
|
}
|
|
|
|
// Extract first message content safely
|
|
const firstMessage = inputs.messages[0];
|
|
const messageContent = extractMessageContent(firstMessage);
|
|
|
|
// Create agent for this run
|
|
const agent = createAgent(parsedNodeTypes, llm, tracer);
|
|
|
|
const chatPayload: ChatPayload = {
|
|
message: messageContent,
|
|
workflowContext: {
|
|
currentWorkflow: { id: runId, nodes: [], connections: {} },
|
|
},
|
|
};
|
|
|
|
// Generate workflow
|
|
let messageCount = 0;
|
|
for await (const _output of agent.chat(chatPayload, 'langsmith-eval-user')) {
|
|
messageCount++;
|
|
}
|
|
|
|
// Get generated workflow with validation
|
|
const state = await agent.getState(runId, 'langsmith-eval-user');
|
|
|
|
// Validate state
|
|
if (!state.values) {
|
|
throw new Error('No values in agent state');
|
|
}
|
|
|
|
if (!isWorkflowStateValues(state.values)) {
|
|
throw new Error('Invalid workflow state: workflow or messages missing');
|
|
}
|
|
|
|
const generatedWorkflow = state.values.workflowJSON;
|
|
const messages = state.values.messages;
|
|
|
|
// Extract usage metadata safely
|
|
const usage = safeExtractUsage(messages);
|
|
|
|
return {
|
|
workflow: generatedWorkflow,
|
|
prompt: chatPayload.message,
|
|
usage,
|
|
};
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Runs evaluation using Langsmith
|
|
*/
|
|
export async function runLangsmithEvaluation(): Promise<void> {
|
|
console.log(formatHeader('AI Workflow Builder Langsmith Evaluation', 70));
|
|
console.log();
|
|
|
|
// Check for Langsmith API key
|
|
if (!process.env.LANGSMITH_API_KEY) {
|
|
console.error(pc.red('✗ LANGSMITH_API_KEY environment variable not set'));
|
|
process.exit(1);
|
|
}
|
|
|
|
try {
|
|
// Setup test environment
|
|
const { parsedNodeTypes, llm, tracer, lsClient } = await setupTestEnvironment();
|
|
|
|
if (!lsClient) {
|
|
throw new Error('Langsmith client not initialized');
|
|
}
|
|
|
|
// Get dataset name from env or use default
|
|
const datasetName = process.env.LANGSMITH_DATASET_NAME ?? 'workflow-builder-canvas-prompts';
|
|
console.log(pc.blue(`➔ Using dataset: ${datasetName}`));
|
|
|
|
// Verify dataset exists
|
|
try {
|
|
await lsClient.readDataset({ datasetName });
|
|
} catch (error) {
|
|
console.error(pc.red(`✗ Dataset "${datasetName}" not found`));
|
|
console.log('\nAvailable datasets:');
|
|
|
|
// List available datasets
|
|
for await (const dataset of lsClient.listDatasets()) {
|
|
console.log(pc.dim(` - ${dataset.name} (${dataset.id})`));
|
|
}
|
|
|
|
console.log(
|
|
'\nTo use a different dataset, set the LANGSMITH_DATASET_NAME environment variable',
|
|
);
|
|
process.exit(1);
|
|
}
|
|
|
|
console.log();
|
|
const startTime = Date.now();
|
|
|
|
// Create workflow generation function
|
|
const generateWorkflow = createWorkflowGenerator(parsedNodeTypes, llm, tracer);
|
|
|
|
// Create LLM-based evaluator
|
|
const evaluator = createLangsmithEvaluator(llm);
|
|
|
|
// Run Langsmith evaluation
|
|
const results = await evaluate(generateWorkflow, {
|
|
data: datasetName,
|
|
evaluators: [evaluator],
|
|
maxConcurrency: 7,
|
|
experimentPrefix: 'workflow-builder-evaluation',
|
|
metadata: {
|
|
evaluationType: 'llm-based',
|
|
modelName: process.env.LLM_MODEL ?? 'default',
|
|
},
|
|
});
|
|
|
|
const totalTime = Date.now() - startTime;
|
|
console.log(pc.green(`✓ Evaluation completed in ${(totalTime / 1000).toFixed(1)}s`));
|
|
|
|
// Display results information
|
|
console.log('\nView detailed results in Langsmith dashboard');
|
|
console.log(
|
|
`Experiment name: workflow-builder-evaluation-${new Date().toISOString().split('T')[0]}`,
|
|
);
|
|
|
|
// Log summary of results if available
|
|
if (results) {
|
|
console.log(pc.dim('Evaluation run completed successfully'));
|
|
console.log(pc.dim(`Dataset: ${datasetName}`));
|
|
}
|
|
} catch (error) {
|
|
console.error(pc.red('✗ Langsmith evaluation failed:'), error);
|
|
process.exit(1);
|
|
}
|
|
}
|