Files
n8n-enterprise-unlocked/packages/@n8n/nodes-langchain/nodes/agents/Agent/test/ToolsAgent/ToolsAgentV2.test.ts
2025-05-13 13:58:38 +02:00

224 lines
7.7 KiB
TypeScript

import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { mock } from 'jest-mock-extended';
import { AgentExecutor } from 'langchain/agents';
import type { Tool } from 'langchain/tools';
import type { IExecuteFunctions, INode } from 'n8n-workflow';
import * as helpers from '../../../../../utils/helpers';
import { toolsAgentExecute } from '../../agents/ToolsAgent/V2/execute';
const mockHelpers = mock<IExecuteFunctions['helpers']>();
const mockContext = mock<IExecuteFunctions>({ helpers: mockHelpers });
beforeEach(() => jest.resetAllMocks());
describe('toolsAgentExecute', () => {
beforeEach(() => {
jest.clearAllMocks();
mockContext.logger = {
debug: jest.fn(),
info: jest.fn(),
warn: jest.fn(),
error: jest.fn(),
};
});
it('should process items sequentially when batchSize is not set', async () => {
const mockNode = mock<INode>();
mockNode.typeVersion = 2;
mockContext.getNode.mockReturnValue(mockNode);
mockContext.getInputData.mockReturnValue([
{ json: { text: 'test input 1' } },
{ json: { text: 'test input 2' } },
]);
const mockModel = mock<BaseChatModel>();
mockModel.bindTools = jest.fn();
mockModel.lc_namespace = ['chat_models'];
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
const mockTools = [mock<Tool>()];
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
// Mock getNodeParameter to return default values
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
if (param === 'text') return 'test input';
if (param === 'options.batching.batchSize') return defaultValue;
if (param === 'options.batching.delayBetweenBatches') return defaultValue;
if (param === 'options')
return {
systemMessage: 'You are a helpful assistant',
maxIterations: 10,
returnIntermediateSteps: false,
passthroughBinaryImages: true,
};
return defaultValue;
});
const mockExecutor = {
invoke: jest
.fn()
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 1' }) })
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 2' }) }),
};
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
const result = await toolsAgentExecute.call(mockContext);
expect(mockExecutor.invoke).toHaveBeenCalledTimes(2);
expect(result[0]).toHaveLength(2);
expect(result[0][0].json).toEqual({ output: { text: 'success 1' } });
expect(result[0][1].json).toEqual({ output: { text: 'success 2' } });
});
it('should process items in parallel within batches when batchSize > 1', async () => {
const mockNode = mock<INode>();
mockNode.typeVersion = 2;
mockContext.getNode.mockReturnValue(mockNode);
mockContext.getInputData.mockReturnValue([
{ json: { text: 'test input 1' } },
{ json: { text: 'test input 2' } },
{ json: { text: 'test input 3' } },
{ json: { text: 'test input 4' } },
]);
const mockModel = mock<BaseChatModel>();
mockModel.bindTools = jest.fn();
mockModel.lc_namespace = ['chat_models'];
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
const mockTools = [mock<Tool>()];
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
if (param === 'options.batching.batchSize') return 2;
if (param === 'options.batching.delayBetweenBatches') return 100;
if (param === 'text') return 'test input';
if (param === 'options')
return {
systemMessage: 'You are a helpful assistant',
maxIterations: 10,
returnIntermediateSteps: false,
passthroughBinaryImages: true,
};
return defaultValue;
});
const mockExecutor = {
invoke: jest
.fn()
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 1' }) })
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 2' }) })
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 3' }) })
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success 4' }) }),
};
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
const result = await toolsAgentExecute.call(mockContext);
expect(mockExecutor.invoke).toHaveBeenCalledTimes(4); // Each item is processed individually
expect(result[0]).toHaveLength(4);
expect(result[0][0].json).toEqual({ output: { text: 'success 1' } });
expect(result[0][1].json).toEqual({ output: { text: 'success 2' } });
expect(result[0][2].json).toEqual({ output: { text: 'success 3' } });
expect(result[0][3].json).toEqual({ output: { text: 'success 4' } });
});
it('should handle errors in batch processing when continueOnFail is true', async () => {
const mockNode = mock<INode>();
mockNode.typeVersion = 2;
mockContext.getNode.mockReturnValue(mockNode);
mockContext.getInputData.mockReturnValue([
{ json: { text: 'test input 1' } },
{ json: { text: 'test input 2' } },
]);
const mockModel = mock<BaseChatModel>();
mockModel.bindTools = jest.fn();
mockModel.lc_namespace = ['chat_models'];
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
const mockTools = [mock<Tool>()];
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
if (param === 'options.batching.batchSize') return 2;
if (param === 'options.batching.delayBetweenBatches') return 0;
if (param === 'text') return 'test input';
if (param === 'options')
return {
systemMessage: 'You are a helpful assistant',
maxIterations: 10,
returnIntermediateSteps: false,
passthroughBinaryImages: true,
};
return defaultValue;
});
mockContext.continueOnFail.mockReturnValue(true);
const mockExecutor = {
invoke: jest
.fn()
.mockResolvedValueOnce({ output: '{ "text": "success" }' })
.mockRejectedValueOnce(new Error('Test error')),
};
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
const result = await toolsAgentExecute.call(mockContext);
expect(result[0]).toHaveLength(2);
expect(result[0][0].json).toEqual({ output: { text: 'success' } });
expect(result[0][1].json).toEqual({ error: 'Test error' });
});
it('should throw error in batch processing when continueOnFail is false', async () => {
const mockNode = mock<INode>();
mockNode.typeVersion = 2;
mockContext.getNode.mockReturnValue(mockNode);
mockContext.getInputData.mockReturnValue([
{ json: { text: 'test input 1' } },
{ json: { text: 'test input 2' } },
]);
const mockModel = mock<BaseChatModel>();
mockModel.bindTools = jest.fn();
mockModel.lc_namespace = ['chat_models'];
mockContext.getInputConnectionData.mockResolvedValue(mockModel);
const mockTools = [mock<Tool>()];
jest.spyOn(helpers, 'getConnectedTools').mockResolvedValue(mockTools);
mockContext.getNodeParameter.mockImplementation((param, _i, defaultValue) => {
if (param === 'options.batching.batchSize') return 2;
if (param === 'options.batching.delayBetweenBatches') return 0;
if (param === 'text') return 'test input';
if (param === 'options')
return {
systemMessage: 'You are a helpful assistant',
maxIterations: 10,
returnIntermediateSteps: false,
passthroughBinaryImages: true,
};
return defaultValue;
});
mockContext.continueOnFail.mockReturnValue(false);
const mockExecutor = {
invoke: jest
.fn()
.mockResolvedValueOnce({ output: JSON.stringify({ text: 'success' }) })
.mockRejectedValueOnce(new Error('Test error')),
};
jest.spyOn(AgentExecutor, 'fromAgentAndTools').mockReturnValue(mockExecutor as any);
await expect(toolsAgentExecute.call(mockContext)).rejects.toThrow('Test error');
});
});