mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
160 lines
4.9 KiB
TypeScript
160 lines
4.9 KiB
TypeScript
import type {
|
|
IExecuteFunctions,
|
|
INodeExecutionData,
|
|
INodeType,
|
|
INodeTypeDescription,
|
|
} from 'n8n-workflow';
|
|
import { NodeApiError, NodeConnectionTypes, NodeOperationError, sleep } from 'n8n-workflow';
|
|
|
|
import { getOptionalOutputParser } from '@utils/output_parsers/N8nOutputParser';
|
|
|
|
// Import from centralized module
|
|
import { formatResponse, getInputs, nodeProperties } from './methods';
|
|
import { processItem } from './methods/processItem';
|
|
import {
|
|
getCustomErrorMessage as getCustomOpenAiErrorMessage,
|
|
isOpenAiError,
|
|
} from '../../vendors/OpenAi/helpers/error-handling';
|
|
|
|
/**
|
|
* Basic LLM Chain Node Implementation
|
|
* Allows connecting to language models with optional structured output parsing
|
|
*/
|
|
export class ChainLlm implements INodeType {
|
|
description: INodeTypeDescription = {
|
|
displayName: 'Basic LLM Chain',
|
|
name: 'chainLlm',
|
|
icon: 'fa:link',
|
|
iconColor: 'black',
|
|
group: ['transform'],
|
|
version: [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7],
|
|
description: 'A simple chain to prompt a large language model',
|
|
defaults: {
|
|
name: 'Basic LLM Chain',
|
|
color: '#909298',
|
|
},
|
|
codex: {
|
|
alias: ['LangChain'],
|
|
categories: ['AI'],
|
|
subcategories: {
|
|
AI: ['Chains', 'Root Nodes'],
|
|
},
|
|
resources: {
|
|
primaryDocumentation: [
|
|
{
|
|
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/',
|
|
},
|
|
],
|
|
},
|
|
},
|
|
inputs: `={{ ((parameter) => { ${getInputs.toString()}; return getInputs(parameter) })($parameter) }}`,
|
|
outputs: [NodeConnectionTypes.Main],
|
|
credentials: [],
|
|
properties: nodeProperties,
|
|
};
|
|
|
|
/**
|
|
* Main execution method for the node
|
|
*/
|
|
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
|
this.logger.debug('Executing Basic LLM Chain');
|
|
const items = this.getInputData();
|
|
const returnData: INodeExecutionData[] = [];
|
|
const outputParser = await getOptionalOutputParser(this);
|
|
// If the node version is 1.6(and LLM is using `response_format: json_object`) or higher or an output parser is configured,
|
|
// we unwrap the response and return the object directly as JSON
|
|
const shouldUnwrapObjects = this.getNode().typeVersion >= 1.6 || !!outputParser;
|
|
|
|
const batchSize = this.getNodeParameter('batching.batchSize', 0, 5) as number;
|
|
const delayBetweenBatches = this.getNodeParameter(
|
|
'batching.delayBetweenBatches',
|
|
0,
|
|
0,
|
|
) as number;
|
|
|
|
if (this.getNode().typeVersion >= 1.7 && batchSize > 1) {
|
|
// Process items in batches
|
|
for (let i = 0; i < items.length; i += batchSize) {
|
|
const batch = items.slice(i, i + batchSize);
|
|
const batchPromises = batch.map(async (_item, batchItemIndex) => {
|
|
return await processItem(this, i + batchItemIndex);
|
|
});
|
|
|
|
const batchResults = await Promise.allSettled(batchPromises);
|
|
|
|
batchResults.forEach((promiseResult, batchItemIndex) => {
|
|
const itemIndex = i + batchItemIndex;
|
|
if (promiseResult.status === 'rejected') {
|
|
const error = promiseResult.reason as Error;
|
|
// Handle OpenAI specific rate limit errors
|
|
if (error instanceof NodeApiError && isOpenAiError(error.cause)) {
|
|
const openAiErrorCode: string | undefined = (error.cause as any).error?.code;
|
|
if (openAiErrorCode) {
|
|
const customMessage = getCustomOpenAiErrorMessage(openAiErrorCode);
|
|
if (customMessage) {
|
|
error.message = customMessage;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (this.continueOnFail()) {
|
|
returnData.push({
|
|
json: { error: error.message },
|
|
pairedItem: { item: itemIndex },
|
|
});
|
|
return;
|
|
}
|
|
throw new NodeOperationError(this.getNode(), error);
|
|
}
|
|
|
|
const responses = promiseResult.value;
|
|
responses.forEach((response: unknown) => {
|
|
returnData.push({
|
|
json: formatResponse(response, shouldUnwrapObjects),
|
|
});
|
|
});
|
|
});
|
|
|
|
if (i + batchSize < items.length && delayBetweenBatches > 0) {
|
|
await sleep(delayBetweenBatches);
|
|
}
|
|
}
|
|
} else {
|
|
// Process each input item
|
|
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
|
try {
|
|
const responses = await processItem(this, itemIndex);
|
|
|
|
// Process each response and add to return data
|
|
responses.forEach((response) => {
|
|
returnData.push({
|
|
json: formatResponse(response, shouldUnwrapObjects),
|
|
});
|
|
});
|
|
} catch (error) {
|
|
// Handle OpenAI specific rate limit errors
|
|
if (error instanceof NodeApiError && isOpenAiError(error.cause)) {
|
|
const openAiErrorCode: string | undefined = (error.cause as any).error?.code;
|
|
if (openAiErrorCode) {
|
|
const customMessage = getCustomOpenAiErrorMessage(openAiErrorCode);
|
|
if (customMessage) {
|
|
error.message = customMessage;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Continue on failure if configured
|
|
if (this.continueOnFail()) {
|
|
returnData.push({ json: { error: error.message }, pairedItem: { item: itemIndex } });
|
|
continue;
|
|
}
|
|
|
|
throw error;
|
|
}
|
|
}
|
|
}
|
|
|
|
return [returnData];
|
|
}
|
|
}
|