mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
243 lines
6.4 KiB
TypeScript
243 lines
6.4 KiB
TypeScript
import { NodeConnectionTypes, parseErrorMetadata, sleep } from 'n8n-workflow';
|
||
import {
|
||
type IExecuteFunctions,
|
||
type INodeExecutionData,
|
||
type INodeType,
|
||
type INodeTypeDescription,
|
||
} from 'n8n-workflow';
|
||
|
||
import { promptTypeOptions, textFromPreviousNode } from '@utils/descriptions';
|
||
import { getBatchingOptionFields, getTemplateNoticeField } from '@utils/sharedFields';
|
||
|
||
import { INPUT_TEMPLATE_KEY, LEGACY_INPUT_TEMPLATE_KEY, systemPromptOption } from './constants';
|
||
import { processItem } from './processItem';
|
||
|
||
export class ChainRetrievalQa implements INodeType {
|
||
description: INodeTypeDescription = {
|
||
displayName: 'Question and Answer Chain',
|
||
name: 'chainRetrievalQa',
|
||
icon: 'fa:link',
|
||
iconColor: 'black',
|
||
group: ['transform'],
|
||
version: [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6],
|
||
description: 'Answer questions about retrieved documents',
|
||
defaults: {
|
||
name: 'Question and Answer Chain',
|
||
color: '#909298',
|
||
},
|
||
codex: {
|
||
alias: ['LangChain'],
|
||
categories: ['AI'],
|
||
subcategories: {
|
||
AI: ['Chains', 'Root Nodes'],
|
||
},
|
||
resources: {
|
||
primaryDocumentation: [
|
||
{
|
||
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/',
|
||
},
|
||
],
|
||
},
|
||
},
|
||
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
|
||
inputs: [
|
||
NodeConnectionTypes.Main,
|
||
{
|
||
displayName: 'Model',
|
||
maxConnections: 1,
|
||
type: NodeConnectionTypes.AiLanguageModel,
|
||
required: true,
|
||
},
|
||
{
|
||
displayName: 'Retriever',
|
||
maxConnections: 1,
|
||
type: NodeConnectionTypes.AiRetriever,
|
||
required: true,
|
||
},
|
||
],
|
||
outputs: [NodeConnectionTypes.Main],
|
||
credentials: [],
|
||
properties: [
|
||
getTemplateNoticeField(1960),
|
||
{
|
||
displayName: 'Query',
|
||
name: 'query',
|
||
type: 'string',
|
||
required: true,
|
||
default: '={{ $json.input }}',
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [1],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Query',
|
||
name: 'query',
|
||
type: 'string',
|
||
required: true,
|
||
default: '={{ $json.chat_input }}',
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [1.1],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Query',
|
||
name: 'query',
|
||
type: 'string',
|
||
required: true,
|
||
default: '={{ $json.chatInput }}',
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [1.2],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
...promptTypeOptions,
|
||
displayOptions: {
|
||
hide: {
|
||
'@version': [{ _cnd: { lte: 1.2 } }],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
...textFromPreviousNode,
|
||
displayOptions: { show: { promptType: ['auto'], '@version': [{ _cnd: { gte: 1.4 } }] } },
|
||
},
|
||
{
|
||
displayName: 'Prompt (User Message)',
|
||
name: 'text',
|
||
type: 'string',
|
||
required: true,
|
||
default: '',
|
||
placeholder: 'e.g. Hello, how can you help me?',
|
||
typeOptions: {
|
||
rows: 2,
|
||
},
|
||
displayOptions: {
|
||
show: {
|
||
promptType: ['define'],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Options',
|
||
name: 'options',
|
||
type: 'collection',
|
||
default: {},
|
||
placeholder: 'Add Option',
|
||
options: [
|
||
{
|
||
...systemPromptOption,
|
||
description: `Template string used for the system prompt. This should include the variable \`{context}\` for the provided context. For text completion models, you should also include the variable \`{${LEGACY_INPUT_TEMPLATE_KEY}}\` for the user’s query.`,
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [{ _cnd: { lt: 1.5 } }],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
...systemPromptOption,
|
||
description: `Template string used for the system prompt. This should include the variable \`{context}\` for the provided context. For text completion models, you should also include the variable \`{${INPUT_TEMPLATE_KEY}}\` for the user’s query.`,
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [{ _cnd: { gte: 1.5 } }],
|
||
},
|
||
},
|
||
},
|
||
getBatchingOptionFields({
|
||
show: {
|
||
'@version': [{ _cnd: { gte: 1.6 } }],
|
||
},
|
||
}),
|
||
],
|
||
},
|
||
],
|
||
};
|
||
|
||
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
||
this.logger.debug('Executing Retrieval QA Chain');
|
||
|
||
const items = this.getInputData();
|
||
const returnData: INodeExecutionData[] = [];
|
||
const batchSize = this.getNodeParameter('options.batching.batchSize', 0, 5) as number;
|
||
const delayBetweenBatches = this.getNodeParameter(
|
||
'options.batching.delayBetweenBatches',
|
||
0,
|
||
0,
|
||
) as number;
|
||
|
||
if (this.getNode().typeVersion >= 1.6 && batchSize >= 1) {
|
||
// Run in batches
|
||
for (let i = 0; i < items.length; i += batchSize) {
|
||
const batch = items.slice(i, i + batchSize);
|
||
const batchPromises = batch.map(async (_item, batchItemIndex) => {
|
||
return await processItem(this, i + batchItemIndex);
|
||
});
|
||
|
||
const batchResults = await Promise.allSettled(batchPromises);
|
||
|
||
batchResults.forEach((response, index) => {
|
||
if (response.status === 'rejected') {
|
||
const error = response.reason;
|
||
if (this.continueOnFail()) {
|
||
const metadata = parseErrorMetadata(error);
|
||
returnData.push({
|
||
json: { error: error.message },
|
||
pairedItem: { item: index },
|
||
metadata,
|
||
});
|
||
return;
|
||
} else {
|
||
throw error;
|
||
}
|
||
}
|
||
const output = response.value;
|
||
const answer = output.answer as string;
|
||
if (this.getNode().typeVersion >= 1.5) {
|
||
returnData.push({ json: { response: answer } });
|
||
} else {
|
||
// Legacy format for versions 1.4 and below is { text: string }
|
||
returnData.push({ json: { response: { text: answer } } });
|
||
}
|
||
});
|
||
|
||
// Add delay between batches if not the last batch
|
||
if (i + batchSize < items.length && delayBetweenBatches > 0) {
|
||
await sleep(delayBetweenBatches);
|
||
}
|
||
}
|
||
} else {
|
||
// Run for each item
|
||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||
try {
|
||
const response = await processItem(this, itemIndex);
|
||
const answer = response.answer as string;
|
||
if (this.getNode().typeVersion >= 1.5) {
|
||
returnData.push({ json: { response: answer } });
|
||
} else {
|
||
// Legacy format for versions 1.4 and below is { text: string }
|
||
returnData.push({ json: { response: { text: answer } } });
|
||
}
|
||
} catch (error) {
|
||
if (this.continueOnFail()) {
|
||
const metadata = parseErrorMetadata(error);
|
||
returnData.push({
|
||
json: { error: error.message },
|
||
pairedItem: { item: itemIndex },
|
||
metadata,
|
||
});
|
||
continue;
|
||
}
|
||
|
||
throw error;
|
||
}
|
||
}
|
||
}
|
||
return [returnData];
|
||
}
|
||
}
|