mirror of
https://github.com/Abdulazizzn/n8n-enterprise-unlocked.git
synced 2025-12-16 17:46:45 +00:00
101 lines
3.1 KiB
TypeScript
101 lines
3.1 KiB
TypeScript
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
||
import {
|
||
ChatPromptTemplate,
|
||
HumanMessagePromptTemplate,
|
||
PromptTemplate,
|
||
SystemMessagePromptTemplate,
|
||
} from '@langchain/core/prompts';
|
||
import type { BaseRetriever } from '@langchain/core/retrievers';
|
||
import { createStuffDocumentsChain } from 'langchain/chains/combine_documents';
|
||
import { createRetrievalChain } from 'langchain/chains/retrieval';
|
||
import { type IExecuteFunctions, NodeConnectionTypes, NodeOperationError } from 'n8n-workflow';
|
||
|
||
import { getPromptInputByType, isChatInstance } from '@utils/helpers';
|
||
import { getTracingConfig } from '@utils/tracing';
|
||
|
||
import { INPUT_TEMPLATE_KEY, LEGACY_INPUT_TEMPLATE_KEY, SYSTEM_PROMPT_TEMPLATE } from './constants';
|
||
|
||
export const processItem = async (
|
||
ctx: IExecuteFunctions,
|
||
itemIndex: number,
|
||
): Promise<Record<string, unknown>> => {
|
||
const model = (await ctx.getInputConnectionData(
|
||
NodeConnectionTypes.AiLanguageModel,
|
||
0,
|
||
)) as BaseLanguageModel;
|
||
|
||
const retriever = (await ctx.getInputConnectionData(
|
||
NodeConnectionTypes.AiRetriever,
|
||
0,
|
||
)) as BaseRetriever;
|
||
|
||
let query;
|
||
|
||
if (ctx.getNode().typeVersion <= 1.2) {
|
||
query = ctx.getNodeParameter('query', itemIndex) as string;
|
||
} else {
|
||
query = getPromptInputByType({
|
||
ctx,
|
||
i: itemIndex,
|
||
inputKey: 'text',
|
||
promptTypeKey: 'promptType',
|
||
});
|
||
}
|
||
|
||
if (query === undefined) {
|
||
throw new NodeOperationError(ctx.getNode(), 'The ‘query‘ parameter is empty.');
|
||
}
|
||
|
||
const options = ctx.getNodeParameter('options', itemIndex, {}) as {
|
||
systemPromptTemplate?: string;
|
||
};
|
||
|
||
let templateText = options.systemPromptTemplate ?? SYSTEM_PROMPT_TEMPLATE;
|
||
|
||
// Replace legacy input template key for versions 1.4 and below
|
||
if (ctx.getNode().typeVersion < 1.5) {
|
||
templateText = templateText.replace(
|
||
`{${LEGACY_INPUT_TEMPLATE_KEY}}`,
|
||
`{${INPUT_TEMPLATE_KEY}}`,
|
||
);
|
||
}
|
||
|
||
// Create prompt template based on model type and user configuration
|
||
let promptTemplate;
|
||
if (isChatInstance(model)) {
|
||
// For chat models, create a chat prompt template with system and human messages
|
||
const messages = [
|
||
SystemMessagePromptTemplate.fromTemplate(templateText),
|
||
HumanMessagePromptTemplate.fromTemplate('{input}'),
|
||
];
|
||
promptTemplate = ChatPromptTemplate.fromMessages(messages);
|
||
} else {
|
||
// For non-chat models, create a text prompt template with Question/Answer format
|
||
const questionSuffix =
|
||
options.systemPromptTemplate === undefined ? '\n\nQuestion: {input}\nAnswer:' : '';
|
||
|
||
promptTemplate = new PromptTemplate({
|
||
template: templateText + questionSuffix,
|
||
inputVariables: ['context', 'input'],
|
||
});
|
||
}
|
||
|
||
// Create the document chain that combines the retrieved documents
|
||
const combineDocsChain = await createStuffDocumentsChain({
|
||
llm: model,
|
||
prompt: promptTemplate,
|
||
});
|
||
|
||
// Create the retrieval chain that handles the retrieval and then passes to the combine docs chain
|
||
const retrievalChain = await createRetrievalChain({
|
||
combineDocsChain,
|
||
retriever,
|
||
});
|
||
|
||
// Execute the chain with tracing config
|
||
const tracingConfig = getTracingConfig(ctx);
|
||
return await retrievalChain
|
||
.withConfig(tracingConfig)
|
||
.invoke({ input: query }, { signal: ctx.getExecutionCancelSignal() });
|
||
};
|